GEOTECHNICAL INVESTIGATION

TL6975 – SAN MARCOS – ESCONDIDO BRADY PROJECT: SDGEC1.078.000 SAN DIEGO COUNTY, CALIFORNIA

PREPARED FOR

RICHARD BRADY & ASSOCIATES, INC. SAN DIEGO, CALIFORNIA

> SEPTEMBER 12, 2017 PROJECT NO. G1818-52-24

GEOTECHNICAL ENVIRONMENTAL MATERIALS

GEOTECHNICAL ENVIRONMENTAL MATERIALS

Project No. G1818-52-24 September 12, 2017

Richard Brady & Associates, Inc. 3710 Ruffin Road San Diego, California 92123

Attention: Mr. Brian Montesi

Subject: GEOTECHNICAL INVESTIGATION TL6975 – SAN MARCOS – ESCONDIDO BRADY PROJECT: SDGEC1.078.000 SAN DIEGO COUNTY, CALIFORNIA

Dear Mr. Montesi:

In accordance with your request and the task order dated March 8, 2016, we herein submit the results of our geotechnical investigation for the subject TL6975 – San Marcos – Escondido project. The accompanying report presents the results of our study and conclusions and recommendations pertaining to the geotechnical aspects of the proposed transmission line improvements. Based on the results of our investigation, it is our opinion that the alignment is suitable for the proposed improvements provided the recommendations of this report are followed.

Should you have questions regarding this report, or if we may be of further service, please contact the undersigned at your convenience.

Very truly yours,

GEOCON INCORPORATED

Yong Wang GE 2775

YW:JJV:ejc

(e-mail) Addressee(e-mail) San Diego Gas and Electric

Attention: Mr. Stanislav Dekic

Jel Jutet

Joseph J. Vettel GE 2401

TABLE OF CONTENTS

1.	PURPOSE AND SCOPE	1
2.	SITE AND PROJECT DESCRIPTION	1
3.	CURRENT AND PREVIOUS INVESTIGATIONS	5
4.	FAULTING AND SEISMICITY AND OTHER HAZARDS	9
5.	SOIL AND GEOLOGIC CONDITIONS5.1 Undocumented Fill (Qudf)5.2 Topsoil5.3 Young Alluvium (Qya)5.4 Santiago Formation (Tsa)5.5 Granodiorite (Kgr)	. 11 . 12 . 12 . 12
6.	GROUNDWATER	. 12
7.	RECOMMENDATIONS FOR FOUNDATION POLES	. 13
8.	 RECOMMENDATIONS FOR TRENCHED UNDERGROUND	. 25 . 25 . 27 . 27
9.	RECOMMENDATIONS FOR TRENCHLESS UNDERGROUND	. 28
10.	RECOMMENDATIONS FOR RETAINING WALLS	. 29
11.	PLAN REVIEW	. 32
LIN	IITATIONS AND UNIFORMITY OF CONDITIONS	
	PS AND ILLUSTRATIONS Figure 1, Vicinity Map Figures 2-13, Site Plans/Geologic Maps PENDIX A FIELD INVESTIGATION Figures A-1 through A-8, Logs of Borings	
API	PENDIX B LABORATORY TESTING Table B-I, Summary of Laboratory Direct Shear Test Results Table B-II, Summary of Laboratory Plasticity Index Test Results Table B-III, Summary of Laboratory Grain Size Distribution Test Results Table B-IV, Summary of Laboratory Soil Corrosion Test Results Table B-V, Summary of Laboratory Maximum Dry Density and Optimum Moisture Content Tes Results Table B-VI, Summary of Laboratory Expansion Index Test Results Figure B-1, Gradation Curves	t

APPENDIX C

SELECTED PREVIOUS EXPLORATION LOGS BY GEOCON AND OTHERS

APPENDIX D

CURRENT PROJECT PLANS AND AS-GRADED GEOLOGIC MAPS OF PREVIOUSLY GRADED PADS

GEOTECHNICAL INVESTIGATION

1. PURPOSE AND SCOPE

This report presents the results of a geotechnical investigation performed for the proposed TL6975 – San Marcos – Escondido transmission line project in San Diego County, California (see Vicinity Map, Figure 1). The purpose of the geotechnical investigation is to evaluate the surface and subsurface geologic conditions, construction conditions along the project alignment, and to provide recommendations regarding the geotechnical aspects of constructing the proposed improvements.

The scope of our geotechnical consulting included reviewing readily available published and unpublished geologic literature, reviewing the previously performed geotechnical investigation, field exploration, laboratory testing, engineering analyses, and preparing this report. The review also included previous geotechnical explorations along the project alignment by Geocon and/or others to aid in evaluating geotechnical conditions.

We performed a field investigation on June 26, 27, and 28, 2017 that included drilling 8 small diameter exploratory borings to a maximum depth of approximately 54 feet. The boring logs and other details of the field investigation are presented in Appendix A. The approximate locations of the current borings and applicable previous explorations are depicted on the *Site Plans/Geologic Maps*, Figures 2 through 13. We tested selected soil samples obtained during the field investigation to evaluate pertinent physical and chemical properties for engineering analyses and to assist in providing recommendations for the proposed overhead and underground improvements. Details of the laboratory tests and a summary of the test results are presented in Appendix B.

Selected previous exploration logs by Geocon and other consultants are included in Appendix C. The current project plans and *As-Graded Geologic Maps* of the previously graded pads are included in Appendix D.

The recommendations presented in this report are based on an analysis of the data collected during the current and previous investigation of nearby site, and our experience with similar soil and geologic conditions.

2. SITE AND PROJECT DESCRIPTION

The final project plans regarding the proposed TL6975 improvements are being prepared therefore are not available to Geocon Incorporated at this time. In general, the project consists of three segments in San Diego County, California (see Vicinity Map, Figure 1). For the purposes of this report, these three segments may be referred to as the west, north, and the east.

The west segment is located along approximately 3.1 miles of transmission line easement of San Diego Gas and Electric (SDG&E) in the City of San Marcos. This segment runs parallel to the existing TL13825/13811 where geotechnical investigations and engineering services during the wood to steel replacement were performed by Geocon Incorporated several years ago. Specifically, this segment begins at Palomar Airport Road and trends approximately 3.1 miles to the southeast and terminates just north of San Elijo Road. Topographically, this alignment consists of ridges and valleys that are accessed from various gated entrances along the SDG&E and local utility easements. The surrounding terrain is rugged and covered by dense chaparral. We understand that approximately 19 poles will be installed along the project alignment.

The north segment consists of supplemental overhead and underground improvements. The total supplemental overhead and underground alignment extends approximately 3.3 miles in the City of San Marcos. The proposed overhead improvements are generally located within the transmission line easement of San Diego Gas and Electric (SDG&E) and consist of 12 foundation poles that may include drilled, cast-in-place reinforced concrete piers, which will vary from 4 to 10 feet in diameter and 20 to 50 feet in depth. The proposed underground improvements generally consist of 69 kV vaults that are to be constructed along West San Marcos Boulevard and Discovery Street. The majority of the proposed vaults will be installed within 10 feet of existing grade using cut-and-cover trenching methods, and a segment of the vaults beneath San Marcos Creek channel will be installed using trenchless construction method with horizontal directional drilling.

The east segment is located at the northern terminus of the existing transmission lines to the Palomar Power Plant in Escondido, where two new poles will be installed in the southern portion of the existing Palomar Power Plant. Geocon Incorporated previously performed geotechnical investigation for the transmission lines of Palomar Power Plant.

We understand that the proposed monopole foundations may include drilled, cast-in-place reinforced concrete piers, which will vary in diameter and depth depending on the prevailing rock and soil conditions but are generally on the order of 4 to 10 feet in diameter and 20 to 50 feet in depth. In addition, new pads with retaining walls will also be constructed for three of the pole foundations.

Tables 2.1 through 2.5 list the proposed poles, pads and associated retaining walls, and the supplemental overhead and underground improvements. The locations of proposed improvements are shown on Figures 2 through 13, *Site Plans/Geologic Maps*. The preliminary plans for the pads of proposed Poles Z100268, Z100273, and Z100274 are also included in Appendix D of this the report.

Pole No.	Latitude	Longitude	Approx. El. (ft)
Z100267	33.1305393	-117.2305889	494.4
Z100268	33.12730476	-117.228504	420.5
Z100269	33.12487651	-117.2269082	528.6
Z100270	33.12311502	-117.2257499	717.1
Z100271	33.12227056	-117.2251951	727.1
Z100272	33.1214068	-117.2246291	691.9
Z100273	33.11509428	-117.2204825	716
Z100274	33.1131924	-117.2192398	769.1
Z100275	33.11200336	-117.2184652	807.7
Z100276	33.11060528	-117.2175433	696.4
Z100277	33.10683497	-117.2150703	482.8
Z100278	33.10266668	-117.2123461	532.7
Z100279	33.10165278	-117.211678	571.2
Z100280	33.09995827	-117.2105642	568.4
Z100281	33.09840371	-117.2095428	570.7
Z100282	33.09722056	-117.2087525	572
Z100283	33.09492527	-117.2070219	481.3
Z100284	33.09488748	-117.204039	537.4
P254291	33.09483995	-117.2038099	535.7

 TABLE 2.1

 SUMMARY OF PROPOSED POLES – WEST SEGMENT

 TABLE 2.2

 SUMMARY OF PROPOSED PADS AND RETAINING WALLS – WEST SEGMENT

Pad No.	Latitude	Longitude	Approx. Pad El. (ft)	Max. Wall Height and Length (ft)
Z100268, #2	33.127305	-117.228504	424	14 and 148
Z100273, #8	33.115094	-117.220483	728	18 and 156
Z100274, #9	33.113192	-117.219240	772	17 and 158

Item	Structure	Latitude	Longitude
1	Z114456	33.1308	-117.2306
2	Z114455	33.1311	-117.2296
3	Z114448	33.1314	-117.2208
4	Z114441	33.1313	-117.2126
5	Z815952	33.1313	-117.2111
6	Z815956	33.1320	-117.2102
7	Z815955	33.1314	-117.2089
8	Z815945	33.1312	-117.2079
9	Z817834	33.1312	-117.2009
10	Z10567	33.1306	-117.2007
11	Z114429	33.1290	-117.1987
12	Z519522	33.1285	-117.1978

 TABLE 2.3

 SUMMARY OF PROPOSED SUPPLEMENTAL OVERHEAD – NORTH SEGMENT

TABLE 2.4 SUMMARY OF PROPOSED UNDERGROUND – NORTH SEGMENT

Item	Item Structure		To Station
1	Vault (cut-and-cover trenching)	11+84	105+34
2	Vault (horizontal directional drilling)	105+34	115+10
3	Vault (cut-and-cover trenching)	115+10	118+90

 TABLE 2.5

 SUMMARY OF PROPOSED POLES – EAST SEGMENT

Pole No.	Latitude	Longitude	Approx. El. (ft)
Z257431	33.12495294	-117.1169552	691.2
Z257432	33.12497716	-117.1165838	683

The site description and proposed improvements are based on a site reconnaissance, and the available topographic maps and project plans. If final improvement plans differ from those described herein, Geocon Incorporated should be contacted for review of the plans and possible revisions to this report, especially with regard to changes in final grade of the top of the pole foundation.

3. CURRENT AND PREVIOUS INVESTIGATIONS

In general, the geotechnical data for the subject project is based on a combination of the previous explorations along the project alignment and the current exploration where previous explorations are not applicable.

The geotechnical data along the north segment was documented by our report titled: *Geotechnical Investigation, TL6975–San Marcos–Escondido, Supplemental Overhead and Underground, BRADY Project: SDGEC1.078.000, San Marcos, California*, prepared by Geocon Incorporated, dated: August 9, 2017 (Project No. G1818-52-24).

Tables 3.1 and 3.2 list the proposed improvements along the north segment and their adjacent geotechnical explorations for overhead and underground, respectively. The approximate locations are shown on Figures 9 through 13, *Site Plans/Geologic Maps*. The logs of current explorations and associated results of laboratory testing are included in Appendices A and B, respectively. Selected logs of previous explorations by others are included in Appendix C. The current project plans for the underground improvements are included in Appendix D.

Item	Structure	Longitude	Longitude	Adjacent Exploration
1	Z114456	33.1308	-117.2306	B1
2	Z114455	33.1311	-117.2296	B1
3	Z114448	33.1314	-117.2208	B10
4	Z114441	33.1313	-117.2126	В9
5	Z815952	33.1313	-117.2111	B2
6	Z815956	33.1320	-117.2102	В3
7	Z815955	33.1314	-117.2089	SDCWA (2015) B-1
8	Z815945	33.1312	-117.2079	SDCWA (2015) B-1
9	Z817834	33.1312	-117.2009	В5
10	Z10567	33.1306	-117.2007	В5
11	Z114429	33.1290	-117.1987	B7
12	Z519522	33.1285	-117.1978	Substation (2008) B-1, B-2, B-3

 TABLE 3.1

 PROPOSED OVERHEAD AND ADJACENT EXPLORATIONS – NORTH SEGMENT

SDCWA = San Diego County Water Authority, Carlsbad 6 FAF

 TABLE 3.2

 PROPOSED UNDERGROUND AND ADJACENT EXPLORATIONS – NORTH SEGMENT

Item	Structure	From Station	To Station	Adjacent Exploration*
1	Vault (cut-and- cover trenching)	11+84	105+34	B1, B10, B3, B5 07349-42-10; 07590-22-17; G1734-52-01; 07528-22-01; 03342-01-01; SDCWA (2015); 03299-02-03; 03726-01- 01; 07732-42-01 to 06; G1000-32-01A; G1331-01-01; G3658-01-01; 04868-31-01; 03747-01-01; 07523-22-01
2	Vault (horizontal directional drilling)	105+34	115+10	B5, B6, B7
3	Vault (cut-and- cover trenching)	115+10	118+90	B6, B7, Substation (2008)

*Current and previous by Geocon and by others.

The geotechnical data along the west and east segments was documented in our report titled: *Geotechnical Investigation, TL6975–San Marcos–Escondido, San Diego County, California,* prepared by Geocon Incorporated, dated April 18, 2016 (Revised May 6, 2016, Project No. G1818-52-24), and *Geotechnical Consultation – Addendum No.1, TL6975-San Marcos-Escondido, San Diego County, California,* prepared by Geocon incorporated, dated August 15, 2016 (Project No. G1818-52-24). We further reviewed the following documents that include the previous geotechnical investigations and engineering services performed for the adjacent TL13825/13811 Shadowridge to Meadowlark Junction project and the Palomar Transmission Lines project:

- 1. Geotechnical Investigation, TL 13825/13811 Shadowridge to Meadowlark Junction, Vista and San Marcos, California, prepared by Geocon Incorporated, dated January 7, 2008 (Project No. 07590-22-25).
- 2. Geotechnical Design Criteria for Segmental (Geosynthetic Reinforced) Retaining Walls, TL 13825/13811 Shadowridge to Meadowlark Junction, Vista and San Marcos, California, prepared by Geocon Incorporated, dated July 25, 2008 (Project No. 07590-22-25).
- 3. *Retaining Wall Plan Review, TL 13825/13811 Shadowridge to Meadowlark Junction, Vista and San Marcos, California,* prepared by Geocon Incorporated, dated October 15, 2008 (Project No. 07590-22-25).
- 4. *Consultation, TL 13825/13811 Shadowridge to Meadowlark Junction, Vista and San Marcos, California,* prepared by Geocon Incorporated, dated July 7, 2009 (Project No. 07590-22-25).
- 5. Final Report of Testing and Observation Services Performed during Site Grading, TL 13825/ 13811 Shadowridge Substation to Meadowlark Junction, Vista and San Marcos, California, prepared by Geocon Incorporated, dated November 18, 2009 (Project No. 07590-22-25A).
- 6. Update: MFAD Parameters, TL 13825/13811 Shadowridge to Meadowlark Junction, Vista and San Marcos, California, prepared by Geocon Incorporated, dated November 19, 2009 (Project No. 07590-22-25A).

- 7. Addendum, Geotechnical Investigation: Design Parameter for New Pole Location (SP-860), TL 13825/13811 Shadowridge to Meadowlark Junction, Vista and San Marcos, California, prepared by Geocon Incorporated, dated March 2, 2010 (Project No. 07590-22-25A).
- 8. Foundation Design Parameters, Palomar Power Transmission Line, S.S.A. 56600009769, *Escondido, California*, prepared by Geocon Incorporated, dated September 20, 2004 (Project No. 07050-22-15B).
- 9. Supplemental Foundation Design Parameters for SP-627, Palomar Power Transmission Line, S.S.A. 56600009769, Escondido, California, prepared by Geocon Incorporated, dated October 21, 2004 (Project No. 07050-22-15B).

Tables 3.3, 3.4 and 3.5 list the summary of the proposed improvements together with the adjacent explorations and engineering services we performed previously along the west and east segments. In general, there are four (4) geotechnical hollow-stem auger borings (B-1, B-5 through B-7); ten (10) air-track borings (AT-1 through AT-3, AT-5, AT-6, AT-8, AT-9, and AT-11 through AT-13); and two (2) rock coring borings (C-1 and C-3). In addition, we performed geotechnical engineering services during the grading of eleven (11) pads and the construction of three (3) associated retaining walls. The approximate locations of previous explorations are depicted on Figures 2 through 8, *Site Plans/Geologic Maps*. The logs of selected previous explorations and the *As-Graded Maps* of the pads and retaining walls are included in Appendices C and D of this report, respectively.

TABLE 3.3 PROPOSED POLES AND ADJACENT PREVIOUS EXPLORATIONS AND GRADED PADS -WEST SEGMENT

Pole No.	Adjacent Previous Exploration	Adjacent Graded Pad
Z100267	B-5	119756
Z100268	B-5, B-6	
Z100269	B-6	
Z100270	AT-9	119759
Z100271	AT-8/C-1	119760
Z100272	AT-8/C-1	
Z100273	AT-13	119762
Z100274	AT-12	119763
Z100275	AT-12	
Z100276	AT-11	119765
Z100277	AT-6	119766
Z100278	AT-1/C-2	
Z100279	AT-1/C-2	
Z100280	AT-2	119769
Z100281	AT-2	119770
Z100282	AT-3	119771
Z100283	AT-5/B-7	119773
Z100284	AT-5/B-7	
P254291	AT-5/B-7	

TABLE 3.4PROPOSED PADS AND ADJACENT PREVIOUS EXPLORATIONS AND GRADED PADS – WESTSEGMENT

Pole No.	Adjacent Previous Exploration	Adjacent Graded Pad
Z100268, #2	B-5, B-6	
Z100273, #8	AT-13	119762
Z100274, #9	AT-12	119763

 TABLE 3.5

 PROPOSED POLES AND ADJACENT PREVIOUS EXPLORATIONS – EAST SEGMENT

Pole No.	Adjacent Previous Exploration
Z257431	B-1
Z257432	B-1

We previously performed laboratory tests on selected soil samples in accordance with generally accepted test methods of the American Society for Testing and Materials (ASTM) or other suggested procedures. We tested selected samples for the in-place moisture, dry density, direct shear strength, and compaction characteristics. In addition, selected rock samples were tested for their unconfined compressive strengths. The results of the in-place moisture and dry density tests are shown on the previous boring logs in Appendix C. Other results of the previous laboratory tests are summarized in Tables 3.6, 3.7, and 3.8 below.

TABLE 3.6 SUMMARY OF PREVIOUS LABORATORY MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE CONTENT TEST RESULTS ASTM D 1557-02

Sample No.	Description	Maximum Dry Density (pcf)	Optimum Moisture Content (% dry wt.)
B6-6a	Yellowish brown, Clayey, fine SAND	125.9	10.1

	Dry Density	Moisture (Content %)	Ultimate	Ultimate	
Sample No.	(pcf)	Before Test	re Test After Test (p		Angle of Shear Resistance (degrees)	
B5-3	110.9	13.7	18.2	1200	26	
B6-7	109.2	11.1	20.9	450	15	
B7-6	118.5	14.8	21.2	1050	20	

TABLE 3.7 SUMMARY OF PREVIOUS LABORATORY DIRECT SHEAR TEST RESULTS ASTM D 3080-03

TABLE 3.8SUMMARY OF PREVIOUS UNCONFINED COMPRESSION TEST RESULTSASTM D 2166 (2938)

Sample No.	Description	Unconfined Compression Strength (psi)	Density (pcf)
C1-1	Moderately Weathered Granodiorite	23,010	163.0
C3-1	Slightly Weathered Granodiorite	37,860	162.9
C4-1	Weathered Granodiorite	14,810	163.0
C5-1	Slightly Weathered Granodiorite	34,970	165.5

Sample C1-1 was obtained from Boring C-1 at 5¹/₂ feet.

Sample C3-1 was obtained from rocks exposed at the vicinity of AT-3.

Sample C4-1 was obtained from rocks exposed at the vicinity of AT-1.

Sample C5-1 was obtained from rocks exposed at the vicinity of AT-11.

4. FAULTING AND SEISMICITY AND OTHER HAZARDS

According to the computer program *EZ-FRISK* (Version 7.65), 9 known active faults are located within a search radius of 50 miles from the project site. We used the 2008 USGS fault database that provides several models and combinations of fault data to evaluate the fault information. Based on this database, the nearest known active fault is the Newport-Inglewood/Rose Canyon Faults, located approximately 9 miles west of the site and is the dominant source of potential ground motion. Earthquakes that might occur on the Newport-Inglewood/Rose Canyon Faults or other faults within the southern California and northern Baja California area are potential generators of significant ground motion at the site. The estimated deterministic maximum earthquake magnitude and peak ground acceleration for the Newport-Inglewood/Rose Canyon Faults are 7.5 and 0.28g, respectively. Table 4.1 lists the estimated maximum earthquake magnitude and peak ground acceleration for the site location. We calculated peak ground acceleration (PGA) using Boore-Atkinson (2008) NGA USGS2008, Campbell-Bozorgnia (2008) NGA USGS, and Chiou-Youngs (2007) NGA USGS2008 acceleration-attenuation relationships.

		Maximum	Peak C	Peak Ground Acceleration				
Fault Name	Distance from Site (miles)	Earthquake Magnitude (Mw)	Boore- Atkinson 2008 (g)	Campbell- Bozorgnia 2008 (g)	Chiou- Youngs 2008 (g)			
Newport-Inglewood	9	7.5	0.25	0.22	0.28			
Rose Canyon	9	6.9	0.21	0.20	0.22			
Elsinore	20	7.9	0.19	0.14	0.18			
Coronado Bank	24	7.4	0.14	0.10	0.11			
Palos Verdes Connected	24	7.7	0.16	0.11	0.14			
Earthquake Valley	37	6.8	0.07	0.06	0.05			
Palos Verdes	41	7.3	0.08	0.06	0.06			
San Joaquin Hills	41	7.1	0.08	0.09	0.08			
San Jacinto	45	7.9	0.10	0.07	0.09			

 TABLE 4.1

 DETERMINISTIC SEISMIC SITE PARAMETERS

We used the computer program *EZ-FRISK* to perform a probabilistic seismic hazard analysis. The computer program *EZ-FRISK* operates under the assumption that the occurrence rate of earthquakes on each mapped Quaternary fault is proportional to the faults slip rate. The program accounts for earthquake magnitude as a function of fault rupture length, and site acceleration estimates are made using the earthquake magnitude and distance from the site to the rupture zone. The program also accounts for uncertainty in each of following: (1) earthquake magnitude, (2) rupture length for a given magnitude, (3) location of the rupture zone, (4) maximum possible magnitude of a given earthquake, and (5) acceleration at the site from a given earthquake along each fault. By calculating the expected accelerations from considered earthquake sources, the program calculates the total average annual expected number of occurrences of site acceleration greater than a specified value. We utilized acceleration-attenuation relationships suggested by Boore-Atkinson (2008) NGA USGS 2008, Campbell-Bozorgnia (2008) NGA USGS 2008, and Chiou-Youngs (2007) USGS2008 in the analysis. Table 4.2 presents the site-specific probabilistic seismic hazard parameters including acceleration-attenuation relationships and the probability of exceedence.

 TABLE 4.2

 PROBABILISTIC SEISMIC HAZARD PARAMETERS

		Peak Ground Acceleration						
Probability of Exceedence	Boore-Atkinson, 2008 (g)	Campbell-Bozorgnia, 2008 (g)	Chiou-Youngs, 2008 (g)					
2% in a 50 Year Period	0.41	0.39	0.44					
5% in a 50 Year Period	0.30	0.29	0.31					
10% in a 50 Year Period	0.23	0.22	0.23					

While listing peak accelerations is useful for comparison of potential effects of fault activity in a region, other considerations are important in seismic design, including the frequency and duration of motion and the soil conditions underlying the site. Seismic design of the structures should be evaluated in accordance with the California Building Code (CBC) and other currently adopted City of San Diego codes.

Except for the potential liquefaction in loose saturated alluvium and/or flooding associated with San Marcos Creek, other geologic and geotechnical hazards such as landslide, erosion, debris flows, rock falls, subsidence, and seismic related conditions such as fault rupture, lateral spreading, seiches, and tsunamis are considered non-applicable for the proposed improvements.

5. SOIL AND GEOLOGIC CONDITIONS

Along the west segment in the City of San Marcos, the proposed poles are underlain by topsoil (residual soil), Santiago Formation, and Granodiorite. The topsoil (residual soil) consists primarily of silty, fine- to coarse-grained sand with up to 15 percent gravel and occasional cobble-size rock fragments. The top few inches has typically high organic contents due to vegetative growth. The Eocene-age Santiago Formation, consists of dense, massive, yellowish brown to gray, silty, fine to coarse sandstones with interbeds of hard, greenish-gray to brown claystones and siltstones. Gravel, cobble and boulders are common in this unit. The Cretaceous-age granodiorite is at various stages of weathering and possesses a medium- to coarse-grained phaneritic texture with corestones interspersed within the formational unit. Granitic rock generally excavates to silty, fine- to coarse-grained sand with rock fragments and the generated soil typically exhibits low expansion potential and adequate shear strength when compacted.

The proposed pole sites along the east segment in the City of Escondido are underlain by topsoil and granitic rock. Alluvium was also encountered in the previous Boring B-7 that is located near the proposed Pole Z100283 but outside the project alignment. However, alluvium is not likely to be encountered at the proposed Pole Z100283 where granitic rock was encountered in the adjacent air-track boring AT-5.

The north segment is generally underlain by undocumented fill, topsoil, young alluvium, and Santiago Formation. The occurrence and distribution of the units are presented on the boring logs in Appendix A. The surficial soil types and geologic units are described below in order of increasing age.

5.1 Undocumented Fill (Qudf)

We encountered undocumented fill within 6 of 8 boring drilled during the current investigation. The undocumented fill generally consists of loose to dense silty sand and clayey sand. The fill was likely

placed during original roadway construction and improvements. Since we have not been able to review engineering reports pertaining to fill placement, the fill is considered undocumented.

5.2 Topsoil

We encountered topsoil within Borings B5 and B6 with a thickness of approximately 3 to 4 feet. The topsoil is composed of soft sandy clay and loose clayey sand. Silty sand with gravel and occasional cobbles were also encountered in topsoil within our previous explorations along the project alignment.

5.3 Young Alluvium (Qya)

Young alluvium was observed beneath the topsoil or undocumented fill within Borings B5, B6, and B7. The young alluvium generally consists of loose to dense, silty sand.

5.4 Santiago Formation (Tsa)

The Santiago Formation encountered in our borings generally consists of dense to very dense, massive, silty sandstone and clayey sandstone. Gravel, cobbles, and boulders are common in this unit.

5.5 Granodiorite (Kgr)

The Cretaceous-age granodiorite encountered within our previous explorations along the project alignment is at various stages of weathering and possesses a medium- to coarse-grained phaneritic texture with corestones interspersed within the formational unit. Granitic rock generally excavates to silty, fine- to coarse-grained sand with rock fragments and the generated soil typically exhibits low expansion potential and adequate shear strength when compacted.

6. GROUNDWATER

We encountered groundwater during our previous investigation within air-track boring AT-7 at approximately 20 feet below the existing ground surface. We further encountered groundwater in current Borings B5, B6, and B7 at depths of 4 to 8 feet below existing grade, or approximate elevations of 510 feet above Mean Sea Level (MSL). Cut-and-cover trenching above this elevation are generally not expected to encounter groundwater if constructed during the dry season; however, it is not uncommon for groundwater or seepage conditions to develop where none previously existed.

Groundwater elevations are dependent on seasonal precipitation; irrigation, land use, among other factors, and vary as a result. If groundwater accumulates in the excavation it should be pumped out prior to the installation of the underground vaults and piers.

7. RECOMMENDATIONS FOR FOUNDATION POLES

For foundations with drilled pier, a generalized subsurface soil profile has been developed for the area surrounding pole foundation based on the data obtained from our current and previous explorations. Soil layers have been categorized by depth below the existing grade and assigned soil parameters that may be utilized with the *MFAD* computer program used by SDG&E for pier foundation design.

Tables 7.1 through 7.12 summarize the average total unit weight, cohesive strength, angle of internal friction, deformation modulus, and strength reduction factors assigned to the soil layers beneath the proposed pole sites along the north segment. Similar parameters for the proposed poles along the west and east segments are summarized in Tables 7.13 through 7.33. The parameters presented herein are based on nearby explorations and experience and testing of similar materials. We have assumed that except for the three proposed pads, the existing grade will not be changed significantly. If the finalized improvements are different from those currently proposed, Geocon Incorporated should be contacted for further evaluation.

 TABLE 7.1

 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z114456)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weight γ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 8	Undocumented Fill	250	31	110	16	122	2.5	1.0
8 to 20+	Santiago Formation	550	30	121	7	133	4.0	1.0

Note: Data based on Boring B1.

TABLE 7.2
RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z114455)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weight γ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 8	Undocumented Fill	250	31	110	16	122	2.5	1.0
8 to 20+	Santiago Formation	550	30	121	7	133	4.0	1.0

Note: Data based on Boring B1.

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weight γ (pcf)	Moisture Content (%)	Total Saturated Unit Weight γ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 2	Undocumented Fill	250	31	110	16	122	2.5	1.0
2 to 20+	Santiago Formation	650	26	130	17	133	4.0	1.0

 TABLE 7.3

 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z114448)

Note: Data based on Boring B10.

TABLE 7.4 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z114441)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weightγ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 6	Undocumented Fill	250	31	110	16	122	2.5	1.0
6 to 20+	Santiago Formation	850	27	130	15	133	4.0	1.0

Note: Data based on Boring B9.

TABLE 7.5 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z815952)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weight γ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 14	Undocumented Fill	350	32	115	11	128	2.5	1.0
14 to 20+	Santiago Formation	1,100	28	130	19	132	4.0	1.0

Note: Data based on Boring B2.

TABLE 7.6 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z815956)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weight γ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 6	Undocumented Fill	250	31	110	16	122	2.5	1.0
6 to 20+	Santiago Formation	670	35	130	14	135	4.0	1.0

Note: Data based on Boring B3.

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weight γ (pcf)	Moisture Content (%)	Total Saturated Unit Weight γ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 6	Fill	250	31	123	18	128	2.5	1.0
6 to 30+	Santiago Formation	670	35	127	14	133	4.0	1.0

 TABLE 7.7

 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z815955)

Note: Data based on SDCWA Boring B-1 (2015).

TABLE 7.8 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z815945)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weightγ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 6	Fill	250	31	123	18	128	2.5	1.0
6 to 30+	Santiago Formation	670	35	127	14	133	4.0	1.0

Note: Data based on SDCWA Boring B-1 (2015).

TABLE 7.9 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z817834)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weight γ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 4	Topsoil	150	25	116	16	125	0.5	1.0
4 to 14	Young Alluvium	1,000	17	127	16	131	1.2	0.8
14 to 42+	Santiago Formation	700	33	133	16	134	4.0	1.0

Note: Data based on Boring B5.

TABLE 7.10RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z10567)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weight γ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 4	Topsoil	150	25	116	16	125	0.5	1.0
4 to 14	Young Alluvium	1,000	17	127	16	131	1.2	0.8
14 to 42+	Santiago Formation	700	33	133	16	134	4.0	1.0

Note: Data based on Boring B5.

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weightγ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 20	Undocumented Fill	300	26	124	22	127	1.0	1.0
20 to 29	Undocumented Fill	390	39	123	20	127	2.0	0.9
29 to 41+	Young Alluvium	800	26	125	20	128	3.5	1.0

 TABLE 7.11

 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z114429)

Note: Data based on Boring B7.

TABLE 7.12
RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z519522)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weight γ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 8	Artificial Fill	200	38	131	6	140	1.5	0.9
8 to 17+	Alluvium	720	20	129	23	131	0.4	1.0

Note: Data based on Substation Borings B-1, B-2 (2008) and B3 (1991).

TABLE 7.13

RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z100267)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weightγ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 20+	Santiago Formation	1,200	25	126	14	132	4.0	1.0

Note: Data based on previous Borings B-5 and the as-built pad for Pole 119756.

 TABLE 7.14

 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z100268)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weight γ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 5	Compacted Fill	200	30	125	14	131	2.0	1.0
5 to 25+	Santiago Formation	1,200	25	126	14	132	4.0	1.0

Note: Data based on previous Borings B-5, B-6, and the proposed new pad.

TABLE 7.15 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z100269)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weightγ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 20+	Santiago Formation	1,200	25	127	20	129	6.0	1.0

Note: Data based on previous Borings B-6.

TABLE 7.16 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z100270)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weight γ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 4	Weathered Granodiorite	70,000	0	150	2	155	20.0	0.5
4 to 20+	Hard Granodiorite	130,000	0	163	1	163	50.0	0.5

Note: Data based on previous Air-Track AT-9 and the as-built pad for Pole 119759.

TABLE 7.17 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z100271)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weightγ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 4	Residual Silty Sand Soil	300	35	130	8	138	2.0	1.0
4 to 20+	Hard Granodiorite Rock	130,000	0	163	1	163	50.0	0.5

Note: Data based on previous Air-Track AT-8, Rock Coring C-1, and the as-built pad for Pole 119760.

TABLE 7.18 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z100272)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weight γ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 4	Residual Silty Sand Soil	300	35	130	8	138	2.0	1.0
4 to 20+	Hard Granodiorite Rock	130,000	0	163	1	163	50.0	0.5

Note: Data based on previous Air-Track AT-8 and the Rock Coring C-1.

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weight γ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 6	Compacted Fill	200	32	130	8	138	2.0	0.0
6 to 12	Compacted Fill	200	32	130	8	138	2.0	1.0
12 to 16	Residual Silty Sand Soil	300	35	150	8	138	2.0	1.0
16 to 32+	Hard Granodiorite	70,000	0	163	2	155	20.0	0.5

 TABLE 7.19

 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z100273)

Note: Data based on previous Air-Track AT-13, as-built pad for Pole 119762, and the proposed new pad. Strength within the upper 6 feet of fill is deducted due to close distance of proposed slope.

 TABLE 7.20

 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z100274)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weightγ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 3	Compacted Fill	200	30	126	9	135	2.0	1.0
3 to 23+	Hard Granodiorite	130,000	0	127	1	163	50.0	0.5

Note: Data based on previous Air-Track AT-12, as-built pad for Pole 119763, and the proposed new pad.

TABLE 7.21 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z100275)

Depth	(feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weight γ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to	20+	Hard Granodiorite	130,000	0	127	1	163	50.0	0.5

Note: Data based on previous Air-Track AT-12.

TABLE 7.22RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z100276)

1	Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weightγ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
	0 to 20+	Hard Granodiorite	130,000	0	123	1	163	50.0	0.5

Note: Data based on previous Air-Track AT-11 and the as-built pad for Pole 119765.

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weightγ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 6	Weathered Granodiorite	70,000	0	121	2	155	20.0	0.5
6 to 20+	Hard Granodiorite	130,000	0	126	1	163	50.0	0.5

 TABLE 7.23

 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z100277)

Note: Data based on previous Air-Track AT-6 and the as-built pad for Pole 119766.

 TABLE 7.24

 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z100278)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weight γ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 12	Weathered Granodiorite	70,000	0	126	2	155	20.0	0.5
12 to 20+	Hard Granodiorite	130,000	0	127	1	163	50.0	0.5

Note: Data based on previous Air-Track AT-1 and the Rock Coring C-2.

TABLE 7.25 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z100279)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weightγ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 12	Weathered Granodiorite	70,000	0	126	2	155	20.0	0.5
12 to 20+	Hard Granodiorite	130,000	0	127	1	163	50.0	0.5

Note: Data based on previous Air-Track AT-1 and the Rock Coring C-2.

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weight γ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 5	Weathered Granodiorite	70,000	0	150	2	155	20.0	0.5
5 to 20+	Hard Granodiorite	130,000	0	163	1	163	50.0	0.5

 TABLE 7.26

 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z100280)

Note: Data based on previous Air-Track AT-2 and the as-built pad for Pole 119769.

 TABLE 7.27

 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z100281)

D	9epth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weight γ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
	0 to 5	Weathered Granodiorite	70,000	0	150	2	155	20.0	0.5
	5 to 20+	Hard Granodiorite	130,000	0	163	1	163	50.0	0.5

Note: Data based on previous Air-Track AT-2 and the as-built pad for Pole 119770.

TABLE 7.28 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z100282)

1	Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weightγ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
	0 to 20+	Hard Granodiorite	130,000	0	120	1	163	50.0	0.5

Note: Data based on previous Air-Track AT-3 and the as-built pad for Pole 119771.

 TABLE 7.29

 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z100283)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weight γ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 20+	Hard Granodiorite	130,000	0	163	1	163	50.0	0.5

Note: Data based on previous Air-Track AT-5, Boring B-7, and the as-built pad for Pole 119773.

TABLE 7.30 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z100284)

De	pth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weight γ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0) to 20+	Hard Granodiorite	130,000	0	163	1	163	50.0	0.5

Note: Data based on previous Air-Track AT-5 and Boring B-7.

TABLE 7.31 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (P254291)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weight γ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0 to 20+	Hard Granodiorite	130,000	0	163	1	163	50.0	0.5

Note: Data based on previous Air-Track AT-5 and Boring B-7.

TABLE 7.32 RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z257431)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weightγ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0-4	Topsoil – Very Dense Clayey Sand	500	35	126	9.6	135	3.0	1.0
4+	Decomposed Granitic Rock	600	39	133	9.6	139	8.0	0.9

Note: Data based on previous Boring B-1.

TABLE 7.33

RECOMMENDED SOIL PARAMETERS FOR PIER FOUNDATION DESIGN (Z257432)

Depth (feet)	Soil Type	Unit Cohesion c (psf)	Friction Angle ø (degrees)	Total Moist Unit Weightγ (pcf)	Moisture Content (%)	Total Saturated Unit Weightγ (pcf)	Deformation Modulus E _p (ksi)	Strength Reduction Factor
0-4	Topsoil – Very Dense Clayey Sand	500	35	126	9.6	135	3.0	1.0
4+	Decomposed Granitic Rock	600	39	133	9.6	139	8.0	0.9

Note: Data based on previous Boring B-1.

We expect that the surficial soil deposits can be excavated with light to moderate effort using conventional heavy-duty drilling/grading equipment. A moderate to very heavy effort is anticipated for excavations within the Santiago Formation and weathered Granodiorite (rippable). Blasting, rock breaking or rock coring will be required if excavations are to extend into the less weathered, fresh Granodiorite rock (marginal to non-rippable). The pier contractor should have auger, core barrels, and excavating tools suitable for penetrating dense and hard layers, boulders, concretions, and cemented zones on-site during the pier construction.

Table 7.34 summarizes the excavation characteristics at each power pole location based on the results of the field investigations. Rock rippability is a function of natural weathering processes that can be variable and change vertically and horizontally over short distances depending on jointing, fracturing, and/or mineralogic discontinuities within the bedrock. With this in mind and the fact that the boreholes were often shifted away from the proposed pole locations due to accessibility constraints, the interpretation prescribed herein may not accurately represent the actual subsurface conditions for the foundations of the individual poles. In addition, rippable materials often contain a substantial amount of "oversize" corestone boulders that would likely require special handling.

The rock rippability in Table 7.34 was estimated based on the difficulty of coring using the CME 75 hollow-stem drill rig. If the hollow-stem auger could be advanced, the soil/rock is considered rippable. Where coring was performed and the RQD values are less than 50 percent, the rock has been considered rippable to marginally rippable. If the RQD values are greater than 50 percent, the rock has been considered non-rippable. For air-track boring, a frequently used guideline to equate rock rippability to drill penetration rate is as follows; a penetration rate of approximately 0 to 20 seconds per foot (spf) generally indicates rippable material, 20 to 30 spf marginally to nonrippable material, and greater than 30 spf nonrippable rock. These general guidelines are typically based on drill rates using a rotary percussion drill rig similar to that used for our investigation.

Pole No.	Depth (feet)	Boring No.	Soil Type	Rippability	Reference
Z114456	0-20	B1	Undocumented Fill (8'±) over Santiago Formation	Rippable	Hollow Stem
Z114455	0-20	B1	Undocumented Fill (8'±) over Santiago Formation	Rippable	Hollow Stem
Z114448	0-20	B10	Undocumented Fill (2'±) over Santiago Formation	Rippable	Hollow Stem
Z114441	0-20	В9	Undocumented Fill (6'±) over Santiago Formation	Rippable	Hollow Stem

TABLE 7.34 EXCAVATION CHARACTERISTICS

TABLE 7.34 (CONTINUED) EXCAVATION CHARACTERISTICS

Pole No.	Depth (feet)	Boring No.	Soil Type	Rippability	Reference
Z815952	0-20	B2	Undocumented Fill (14'±) over Santiago Formation	Rippable	Hollow Stem
Z815956	0-20	В3	Undocumented Fill (6'±) over Santiago Formation	Rippable	Hollow Stem
Z815955	0-30	SDCWA B-1	Fill (6'±) over Santiago Formation	Rippable	Hollow Stem
Z815945	0-30	SDCWA B-1	Fill (6'±) over Santiago Formation	Rippable	Hollow Stem
Z817834	0-42	В5	Topsoil (4'±) and Young Alluvium (10'±) over Santiago Formation	Rippable	Hollow Stem
Z10567	0-42	В5	Topsoil (4'±) and Young Alluvium (10'±) over Santiago Formation	Rippable	Hollow Stem
Z114429	0-41	B7	Undocumented Fill (29'±) over Young Alluvium	Rippable	Hollow Stem
Z519522	0-17	Substation B-1, B-2 and B-3	Artificial Fill (8'±) over Alluvium	Rippable	Hollow Stem
Z100267	0-20	Previous B-5	Santiago Formation	Rippable	Hollow Stem
Z100268	0-25	Previous B-5, B-6	New Fill (5'±) over Santiago Formation	Rippable	Hollow Stem
Z100269	0-20	Previous B-6	Santiago Formation	Rippable	Hollow Stem
Z100270	0-4	Previous AT-9	Weathered Granodiorite	Rippable	Air Track
2100270	2-20	Previous AT-9	Hard Granodiorite	Non-rippable	Air Track
7100271	0-4	Previous AT-8, C-1	Residual Silty Sand Soil	Rippable	Air Track
Z100271	4 - 20	Previous AT-8, C-1	Hard Granodiorite Rock	Non-rippable	Air Track – Rock Coring
7100272	0-4	Previous AT-8, C-1	Residual Silty Sand Soil	Rippable	Air Track
Z100272	4 - 20	Previous AT-8, C-1	Hard Granodiorite Rock	Non-rippable	Air Track – Rock Coring
7100272	0 – 16	Previous AT-13	New Fill (12'±) over Residual Silty Sand Soil	Rippable	Air Track
Z100273	16 – 32	Previous AT-13	Hard Granodiorite	Non-Rippable	Air Track

TABLE 7.34 (CONCLUDED)EXCAVATION CHARACTERISTICS

Pole No.	Depth (feet)	Boring No.	Soil Type Rippability		Reference
Z100274	0-23	Previous AT-12	New Fill (3'±) over Hard Granodiorite	Non-Rippable	Air Track
Z100275	0-20	Previous AT-12	Hard Granodiorite	Non-Rippable	Air Track
Z100276	0-20	Previous AT-11	Hard Granodiorite	Non-Rippable	Air Track
7100277	0-6	Previous AT-6	Weathered Granodiorite	Rippable	Air Track
Z100277	6 - 20	Previous AT-6	Hard Granodiorite	Non-Rippable	Air Track
7100070	0-12	Previous AT-1, C-2	Weathered Granodiorite	Rippable	Air Track – Rock Coring
Z100278	12 - 20	Previous AT-1, C-2	Hard Granodiorite	Non-Rippable	Air Track – Rock Coring
7100050	0-12	Previous AT-1, C-2	Weathered Granodiorite	Rippable	Air Track – Rock Coring
Z100279	12 - 20	Previous AT-1, C-2	Hard Granodiorite	Non-Rippable	Air Track – Rock Coring
7100200	0 – 5	Previous AT-2	Weathered Granodiorite	Rippable	Air Track
Z100280	5 - 20	Previous AT-2	Hard Granodiorite	Non-Rippable	Air Track
7100001	0 – 5	Previous AT-2	Weathered Granodiorite	Rippable	Air Track
Z100281	5 - 20	Previous AT-2	Hard Granodiorite	Non-Rippable	Air Track
Z100282	0 - 20	Previous AT-3	Hard Granodiorite	Non-Rippable	Air Track
Z100283	0 - 20	Previous AT-5	Hard Granodiorite	Non-Rippable	Air Track
Z100284	0 - 20	Previous AT-5	Hard Granodiorite	Non-Rippable	Air Track
P254291	0 - 20	Previous AT-5	Hard Granodiorite	Non-Rippable	Air Track
Z257431	0 - 20	Previous B-1	Topsoil over Decomposed Granitic Rock	Rippable	Hollow Stem
Z257432	0 - 20	Previous B-1	Topsoil over Decomposed Granitic Rock	Rippable	Hollow Stem

Groundwater was encountered within the previous air-track boring AT-7 at approximately 20 feet below the existing ground surface, and in the current Borings B5, B6, and B7 at the approximately

elevation of 510 feet MSL. It is not uncommon for groundwater or seepage conditions to develop where none previously existed. Groundwater and/or seepage accumulating in drilled pier borings should be pumped out prior to placement of concrete. Sloughing or reveling could occur where relatively clean sands are encountered below the groundwater level or where loose soils are encountered. Therefore, casing and/or wet methods may be necessary to facilitate construction of proposed pier foundation extending below the groundwater table or into loose soil.

8. RECOMMENDATIONS FOR TRENCHED UNDERGROUND

8.1 Excavation and Soil Characteristics

We expect that the undocumented fill, topsoil, and young alluvium along the proposed cut-and-cover trenching alignment within the north segment can be excavated with light to moderate effort using conventional heavy-duty excavation equipment. Moderate to very heavy effort should be expected within the Santiago Formation.

We tested 3 on-site soil samples for expansion characteristics. The results indicate "very low" to "medium" expansion potential (Expansion Index of 90 or less) as defined by 2013 California Building Code (CBC) Section 1803.5.3. Table 8.1 presents soil classifications based on the expansion index.

Expansion Index (EI)	Expansion Classification	2013 CBC Expansion Classification	
0-20	Very Low	Non-Expansive	
21 - 50	Low		
51 - 90	Medium	Francisco	
91 - 130	High	Expansive	
Greater Than 130	Very High		

 TABLE 8.1

 EXPANSION CLASSIFICATION BASED ON EXPANSION INDEX

8.2 Temporary Slope and Excavation Support

Temporary excavations should be made in conformance with OSHA requirements. On-site undocumented fill, topsoil, and young alluvium should be considered a Type B (Type C soil if seepage or groundwater is encountered) soil and Santiago Formation should be considered a Type A soil (Type B soil if seepage or groundwater is encountered) in accordance with OSHA requirements. In general, special shoring requirements will not be necessary if temporary excavations will be less than 5 feet in height. Temporary excavations greater than 5 feet in height, however, should be sloped back at an appropriate inclination according to OSHA requirements. These excavations should not be

allowed to become saturated or to dry out. Surcharge loads should not be permitted to a distance equal to the height of the excavation from the top of the excavation. The top of the excavation should be a minimum of 15 feet from the edge of existing improvements. Excavations steeper than those recommended or closer than 15 feet from an existing surface improvement should be shored in accordance with applicable OSHA codes and regulations.

Temporary, unsupported cuts in undocumented fill, topsoil, and young alluvium should not be steeper than 1:1 (horizontal:vertical) up to 20 feet in height. Excavations in Santiago Formation can be made with slopes of ³/₄:1. Excavation slopes should be checked by an engineering geologist or geotechnical engineer to evaluate the existence of zones of weakness, groundwater seepage, or adversely oriented cracks that could form local areas of slope instability. Flatter slopes, shoring or safety shields will be needed in areas where sloughing, raveling or running is encountered. The contractor should be made aware of this potential and have the equipment available on site to flatten slopes or install shoring if necessary. Loose or easily erodible soils may be present locally and should be removed from the faces of excavation side slopes before personnel begin work below the slopes.

Where a portable safety shield is used to protect workers, the side wall of the trench is not directly supported. Therefore, use of a shield generally should be limited to open areas to minimize the effects on adjacent improvements or settlement of the ground surface behind the shield. Shields should be sized to minimize clearance between trench and shield walls. Unsupported trenches should be backfilled immediately after removal of the shield.

Temporary cantilevered shoring can be designed for an active soil pressure equivalent to the pressure exerted by a fluid density of 25 pcf. Temporary multi-braced shoring should be designed using a lateral pressure envelope acting uniformly on the back of the shoring and applying a pressure equal to 16H, where H is the height of the shoring in feet (resulting pressure in pounds per square foot). Also, lateral earth pressure due to the surcharging effects of adjacent structures or traffic loads should be considered where appropriate during design of the shoring system.

Passive soil pressure resistance for embedded portions of soldier piles can be estimated based on an equivalent fluid weight of 300 pounds per cubic foot (pcf).

Lateral movement of shoring is associated with vertical ground settlement outside of the excavation. It is important that the shoring system allow limited amounts of lateral displacement. We recommend that horizontal movements of the shoring wall be accurately monitored and recorded during excavation if adjacent settlement sensitive improvements are present.

Lagging should keep pace with excavation. We recommend that the excavation not be advanced deeper than 3 feet below the bottom of lagging at any time. These unlagged gaps of up to 3 feet

should only be allowed to stand for short periods of time in order to decrease the probability of soil sloughing and caving. Backfilling should be conducted when necessary between the back of lagging and excavation sidewalls to reduce sloughing in this zone.

The condition of existing streets and other structures (if any) around the perimeter of the planned excavation should be documented prior to the start of shoring and excavation work. Special attention should be given to documenting existing cracks or other indications of differential settlement within these adjacent pavements and other improvements.

8.3 Ground Control and Improvement

It is important that the contractor be provided with complete soil, underground utility, and groundwater information so that appropriate equipment can be mobilized. In addition, providing adequate information before the project starts will be vital if claims for changed conditions are filed during construction.

The contractor should monitor existing pavement areas and adjacent improvements for surface deflection (settlement or heave) during construction so that appropriate modification to the excavation and shoring system are implemented to minimize the surface deflection in a timely manner.

In addition to existing surface improvements, other underground utilities may exist near and above the proposed vault. The actual depths and locations of some of these pipes may not be known accurately. The bedding for these pipes may also carry significant quantities of water. To reduce the settlement potential and avoid damaging adjacent pipelines (by undermining the pipe if the bedding material is encountered in the heading), the bedding material supporting the overlying pipe can be stabilized locally using cement grout from the ground surface.

8.4 Bearing Capacity for Underground Vault

Our test boring indicated that on-site soils generally have adequate bearing capacity for support of the proposed underground vault. We do not expect a significant increase in load over the present overburden. Consequently, vault settlement under static loading should be negligible.

8.5 Dewatering

Along the alignment of the proposed underground vault near and crossing San Marcos Creek, we encountered groundwater within the adjacent Borings B5, B6 and B7 at depths of approximately 4 to 8 feet below the existing grade, or at the approximate elevation of 510 feet MSL. We understand that this segment of vault will be installed via horizontal directional drilling. Groundwater may not be

encountered if trenching is performed during the dry season and above the static groundwater level. However, if significant amounts of seepage are encountered during excavation, water should be pumped away to facilitate the installation of underground vaults.

9. RECOMMENDATIONS FOR TRENCHLESS UNDERGROUND

Based on the currently available project plans, approximately 976 lineal feet of the proposed underground conduit between approximately Stations 105+34 and 115+10 within the north segment will be installed using horizontal directional drilling (HDD). The invert elevations of the proposed HDD are at or above 481 feet MSL. Our recommendations regarding HDD are provided below:

- The anticipated subsurface materials near the depth of the proposed HDD generally consist of undocumented fill (Qudf), young alluvium (Qya), and Santiago Formation (Tsa). Groundwater encountered in our borings is at approximately depths of 4 to 8 feet below the existing grade, or at approximate elevation of 510 feet MSL.
- The undocumented fill generally consists of loose to medium dense clayey sand. The young alluvium generally consists of loose to dense silty sand. The Santiago Formation generally consists of dense to very dense, silty and clayey sandstone and sandy siltstone. The drilling equipment and drill fluid should be selected based on the anticipated subsurface conditions. Potential hazardous materials were not encountered in our borings.
- The on-site young alluvial deposits below the groundwater level are susceptible to liquefaction, and a liquefaction induced settlement on the order of 4 inches may occur.
- We did not observe any sinkholes on site during our field exploration. However, the potential for sinkhole exists if working within alluvium at shallow depth. The proper depth of HDD should be designed by the project engineer. For the minimum depth of cover, the scour potential as well as a minimum ratio of 10-to-1 for depth of cover to borehole diameter should be considered.
- The installation methods and/or procedures should be selected by the drilling contractor. The drag force on pipe can be estimated based on the typical coefficients of friction of 0.5 for empty pipe and 0.3 for buoyant pipe.
- Corrosion testing performed on one soil sample (B7-1) along the HDD alignment yields a resistivity of 1,500 ohm-cm, a pH of 7.2, a chloride content of 90 ppm, and a sulfate content of 30 ppm. The soil sample tested is not considered corrosive based on Caltrans criteria. Geocon Incorporated does not practice in the field of corrosion engineering. Therefore, further evaluation by a corrosion engineer may be performed if improvements susceptible to corrosion are planned.
- The updated plans show several existing underground utilities. The proposed HDD should be planned to avoid any conflicts with the existing improvements, underground utilities, and/or other man-made obstructions.

10. RECOMMENDATIONS FOR RETAINING WALLS

We understand that three individual pads with retaining walls up to 18 feet in height will be constructed for the proposed Poles Z100268, Z100273, and Z100274. Each of these sites will require import fill soils to achieve the proposed grads. The source of imported soil in not known at this point. The foundation material for these sites consists of Santiago Formation (Pole Z100268) or weathered/fractured granitic rock (Poles Z100273 and Z100274) that possesses relatively high shear strength in its natural state or when used as fill. We assume that the additional fill would come from similar materials. We further assume that the proposed retaining walls consist of segmental (geosynthetic reinforced) retaining walls similar to those retaining walls built along the TL13825/13811 alignment. Table 10.1 lists the recommended geotechnical parameters for the geosynthetic reinforced walls.

Parameter	Reinforced Zone	Retained Zone	Foundation Zone
Angle of Internal Friction	30 degrees	30 degrees	30 degrees
Cohesion	0 psf	0 psf	0 psf
Wet Unit Weight	125 pcf	125 pcf	125 pcf

 TABLE 10.1

 GEOTECHNICAL PARAMETERS FOR GEOSYNTHETIC REINFORCED WALLS

The imported soil should possess less than 35 percent passing sieve #200 and a maximum Plasticity Index (PI) of 20. Import materials should be subjected to laboratory testing to verify conformance with specified wall design parameters. Materials not meeting the minimum design parameters specified by the wall engineer should not be utilized.

The above parameters assume that walls will be founded on native formational soils or properly compacted fill and a temporary backcut will be performed against the formational material or compacted fill. The foundation zone is the area where the footing is embedded; the reinforced zone is the area of the backfill that possesses the reinforcing fabric; and the retained zone is the area behind the reinforced zone.

An allowable soil bearing pressure of 2,000 psf (pounds per square foot) should be used for foundation design. This bearing pressure assumes a minimum foundation width and depth of 12 inches.

Backfill materials within the reinforced zone should be compacted to a dry density of at least 90 percent of the laboratory maximum dry density at or slightly above optimum moisture content in

accordance with ASTM D 1557. This is applicable to the entire embedment width of the geogrid reinforcement.

Geosynthetic reinforcement must elongate to develop full tensile resistance. This elongation generally results in movement at the top of the wall. The amount of movement is dependent upon the height of the wall (e.g., higher walls rotate more) and the type of geogrid reinforcing used. In addition, over time geogrid has been known to exhibit creep (sometimes as much as 5 percent) and can undergo additional movement. Given this condition, the owner should be aware that structures and pavement placed within the reinforced and retained zones of the wall may undergo movement.

We used the computer program *U.S. Seismic Design Maps*, provided by the USGS to evaluate the seismic design criteria. Tables 10.2, 10.3, and 10.4 summarize site-specific design criteria for each wall obtained from the 2013 California Building Code (CBC; Based on the 2012 International Building Code [IBC] and ASCE 7-10), Chapter 16 Structural Design, Section 1613 Earthquake Loads. The short spectral response uses a period of 0.2 second. The building structure and improvements should be designed using a Site Class C. We evaluated the Site Class based on the discussion in Section 1613.3.2 of the 2013 CBC and Table 20.3-1 of ASCE 7-10. The values presented in Tables 10.2, 10.3, and 10.4 are for the risk-targeted maximum considered earthquake (MCE_R).

Parameter	Value	2013 CBC Reference
Site Class	С	Section 1613.3.2
MCE _R Ground Motion Spectral Response Acceleration – Class B (short), S _S	1.022g	Figure 1613.3.1(1)
MCE _R Ground Motion Spectral Response Acceleration – Class B (1 sec), S ₁	0.398g	Figure 1613.3.1(2)
Site Coefficient, F _A	1.000	Table 1613.3.3(1)
Site Coefficient, Fv	1.402	Table 1613.3.3(2)
Site Class Modified MCE _R Spectral Response Acceleration (short), S _{MS}	1.022g	Section 1613.3.3 (Eqn 16-37)
Site Class Modified MCE _R Spectral Response Acceleration (1 sec), S _{M1}	0.558g	Section 1613.3.3 (Eqn 16-38)
5% Damped Design Spectral Response Acceleration (short), S _{DS}	0.681g	Section 1613.3.4 (Eqn 16-39)
5% Damped Design Spectral Response Acceleration (1 sec), S _{D1}	0.372g	Section 1613.3.4 (Eqn 16-40)

TABLE 10.22013 CBC SEISMIC DESIGN PARAMETERS (Z100268 RW)

Parameter	Value	2013 CBC Reference
Site Class	С	Section 1613.3.2
MCE _R Ground Motion Spectral Response Acceleration – Class B (short), S _S	1.015g	Figure 1613.3.1(1)
MCE _R Ground Motion Spectral Response Acceleration – Class B (1 sec), S ₁	0.396g	Figure 1613.3.1(2)
Site Coefficient, F _A	1.000	Table 1613.3.3(1)
Site Coefficient, Fv	1.404	Table 1613.3.3(2)
Site Class Modified MCE _R Spectral Response Acceleration (short), S _{MS}	1.015g	Section 1613.3.3 (Eqn 16-37)
Site Class Modified MCE _R Spectral Response Acceleration (1 sec), S_{M1}	0.556g	Section 1613.3.3 (Eqn 16-38)
5% Damped Design Spectral Response Acceleration (short), S _{DS}	0.677g	Section 1613.3.4 (Eqn 16-39)
5% Damped Design Spectral Response Acceleration (1 sec), S _{D1}	0.370g	Section 1613.3.4 (Eqn 16-40)

TABLE 10.32013 CBC SEISMIC DESIGN PARAMETERS (Z100273 RW)

TABLE 10.42013 CBC SEISMIC DESIGN PARAMETERS (Z100274 RW)

Parameter	Value	2013 CBC Reference
Site Class	С	Section 1613.3.2
MCE _R Ground Motion Spectral Response Acceleration – Class B (short), S _S	1.014g	Figure 1613.3.1(1)
MCE _R Ground Motion Spectral Response Acceleration – Class B (1 sec), S ₁	0.395g	Figure 1613.3.1(2)
Site Coefficient, F _A	1.000	Table 1613.3.3(1)
Site Coefficient, F _V	1.405	Table 1613.3.3(2)
Site Class Modified MCE _R Spectral Response Acceleration (short), S_{MS}	1.014g	Section 1613.3.3 (Eqn 16-37)
Site Class Modified MCE _R Spectral Response Acceleration (1 sec), S_{M1}	0.555g	Section 1613.3.3 (Eqn 16-38)
5% Damped Design Spectral Response Acceleration (short), S _{DS}	0.676g	Section 1613.3.4 (Eqn 16-39)
5% Damped Design Spectral Response Acceleration (1 sec), S _{D1}	0.370g	Section 1613.3.4 (Eqn 16-40)

Tables 10.5, 10.6, and 10.7 present additional seismic design parameters for projects located in Seismic Design Categories of D through F in accordance with ASCE 7-10 for the mapped maximum considered geometric mean (MCE_G).

TABLE 10.52013 CBC SITE ACCELERATION DESIGN PARAMETERS (Z100268 RW)

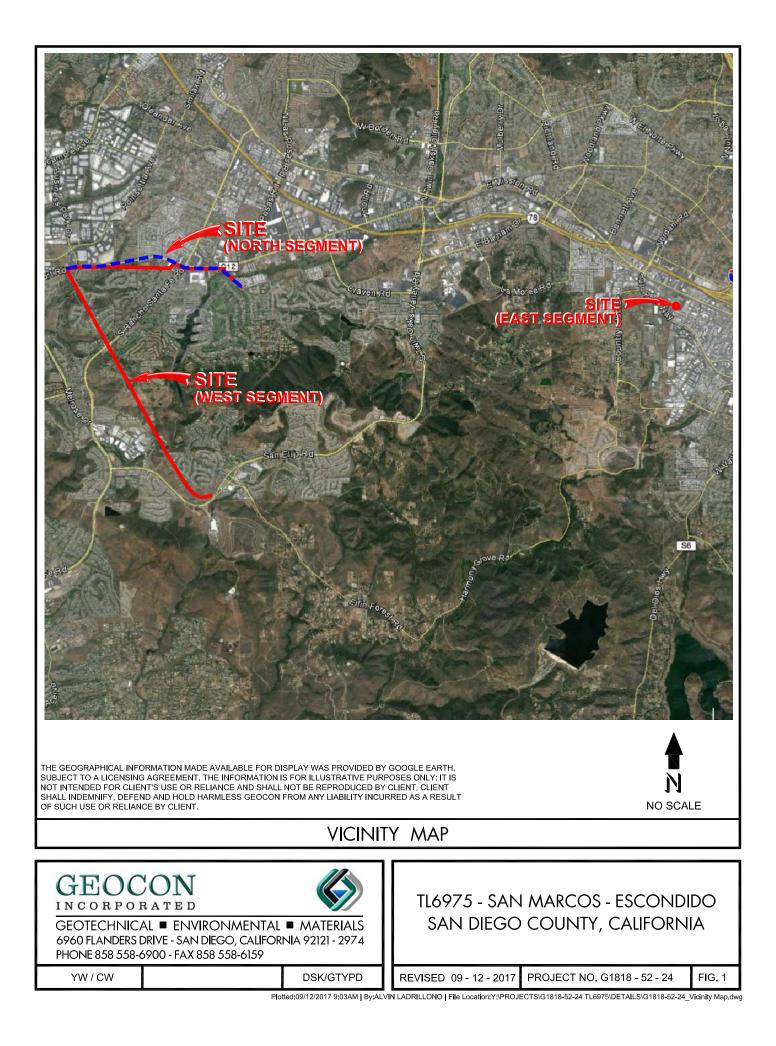
Parameter	Value	ASCE 7-10 Reference
Mapped MCE _G Peak Ground Acceleration, PGA	0.387g	Figure 22-7
Site Coefficient, F _{PGA}	1.013	Table 11.8-1
Site Class Modified MCE _G Peak Ground Acceleration, PGA _M	0.392g	Section 11.8.3 (Eqn 11.8-1)

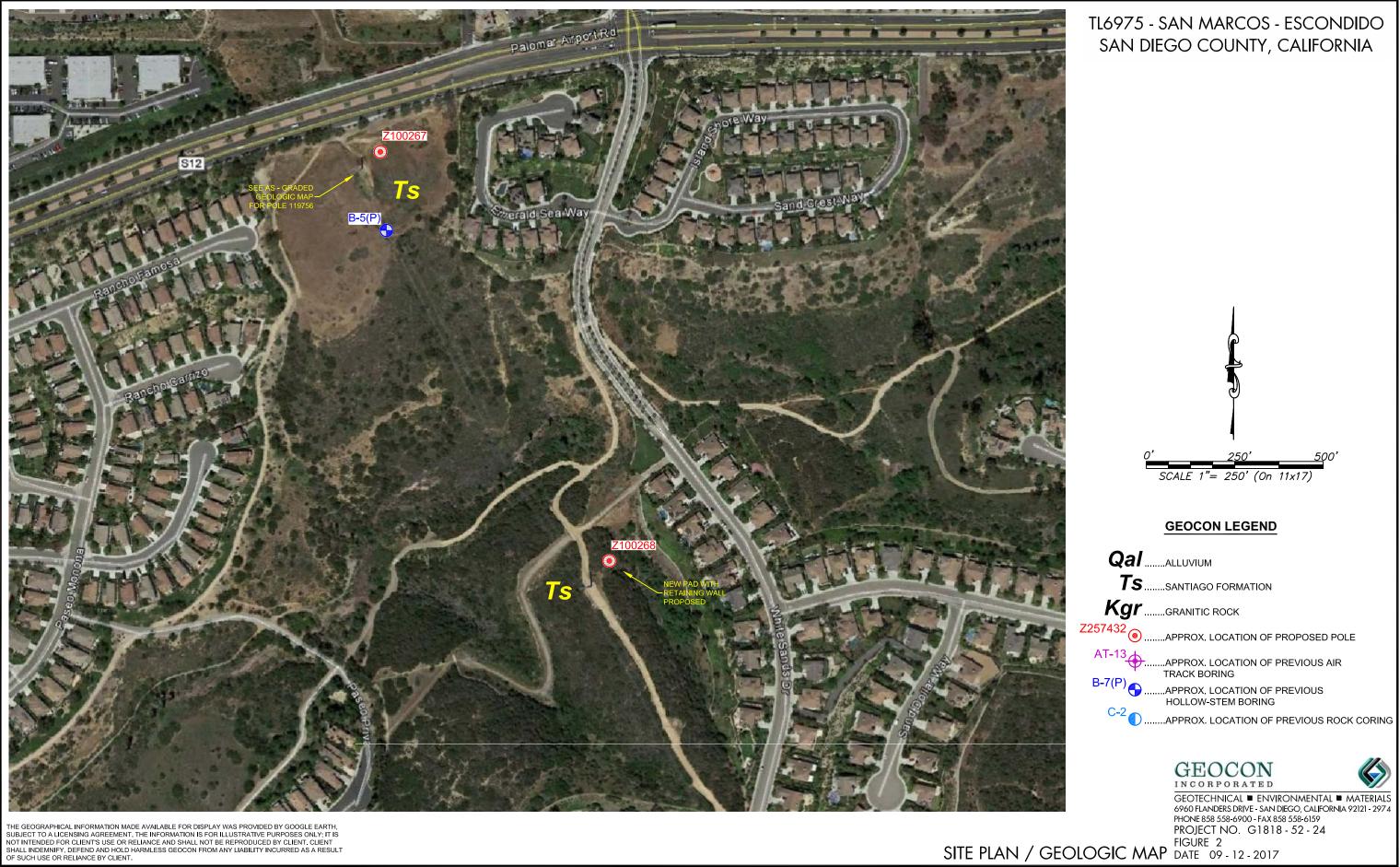
TABLE 10.62013 CBC SITE ACCELERATION DESIGN PARAMETERS (Z100273 RW)

Parameter	Value	ASCE 7-10 Reference
Mapped MCE _G Peak Ground Acceleration, PGA	0.385g	Figure 22-7
Site Coefficient, FPGA	1.015	Table 11.8-1
Site Class Modified MCE_G Peak Ground Acceleration, PGA_M	0.391g	Section 11.8.3 (Eqn 11.8-1)

TABLE 10.72013 CBC SITE ACCELERATION DESIGN PARAMETERS (Z100274 RW)

Parameter	Value	ASCE 7-10 Reference
Mapped MCE _G Peak Ground Acceleration, PGA	0.384g	Figure 22-7
Site Coefficient, FPGA	1.016	Table 11.8-1
Site Class Modified MCE _G Peak Ground Acceleration, PGA _M	0.390g	Section 11.8.3 (Eqn 11.8-1)

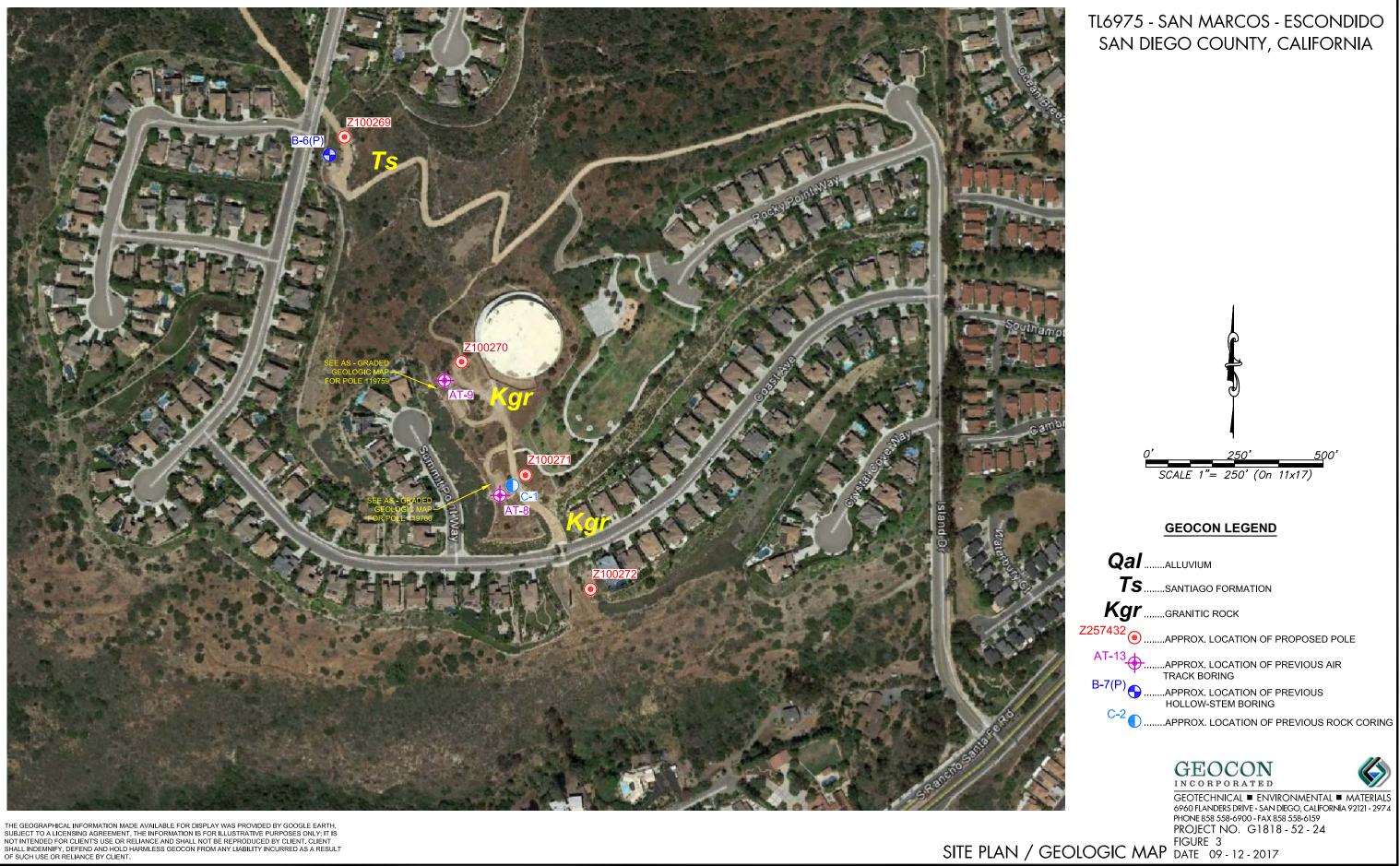

Conformance to the criteria in Tables 10.2 through 10.7 for seismic design does not constitute any kind of guarantee or assurance that significant structural damage or ground failure will not occur if a large earthquake occurs. The primary goal of seismic design is to protect life, not to avoid all damage, since such design may be economically prohibitive.


11. PLAN REVIEW

We recommend that the final plans and specifications be reviewed by Geocon Incorporated to evaluate if the plans and details have been prepared in substantial conformance with the recommendations contained within this report.

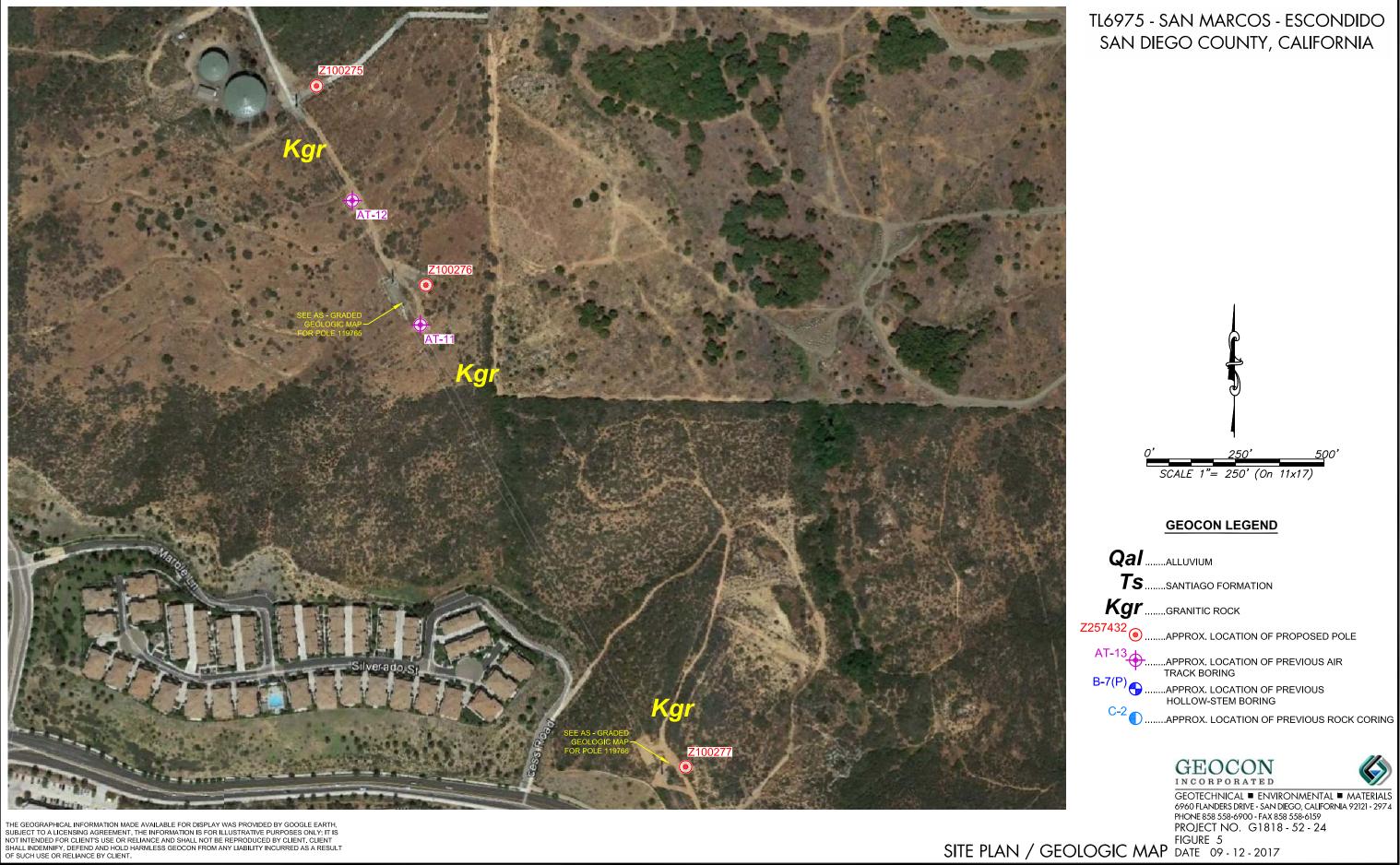
LIMITATIONS AND UNIFORMITY OF CONDITIONS

- 1. The recommendations of this report pertain only to the site investigated and are based upon the assumption that the soil conditions do not deviate from those disclosed in the investigation. If any variations or undesirable conditions are encountered during construction, or if the proposed construction will differ from that anticipated herein, Geocon Incorporated should be notified so that supplemental recommendations can be given. The evaluation or identification of the potential presence of hazardous or corrosive materials was not part of the scope of services provided by Geocon Incorporated.
- 2. This report is issued with the understanding that it is the responsibility of the owner or his representative to ensure that the information and recommendations contained herein are brought to the attention of the architect and engineer for the project and incorporated into the plans, and that the necessary steps are taken to see that the contractor and subcontractors carry out such recommendations in the field.
- 3. The findings of this report are valid as of the present date. However, changes in the conditions of a property can occur with the passage of time, whether due to natural processes or the works of man on this or adjacent properties. In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and should not be relied upon after a period of three years.
- 4. The firm that performed the geotechnical investigation for the project should be retained to provide testing and observation services during construction to provide continuity of geotechnical interpretation and to check that the recommendations presented for geotechnical aspects of site development are incorporated during site grading, construction of improvements, and excavation of foundations. If another geotechnical firm is selected to perform the testing and observation services during construction operations, that firm should prepare a letter indicating their intent to assume the responsibilities of project geotechnical engineer of record. A copy of the letter should be provided to the regulatory agency for their records. In addition, that firm should provide revised recommendations concerning the geotechnical aspects of the proposed development, or a written acknowledgement of their concurrence with the recommendations presented in our report. They should also perform additional analyses deemed necessary to assume the role of Geotechnical Engineer of Record.

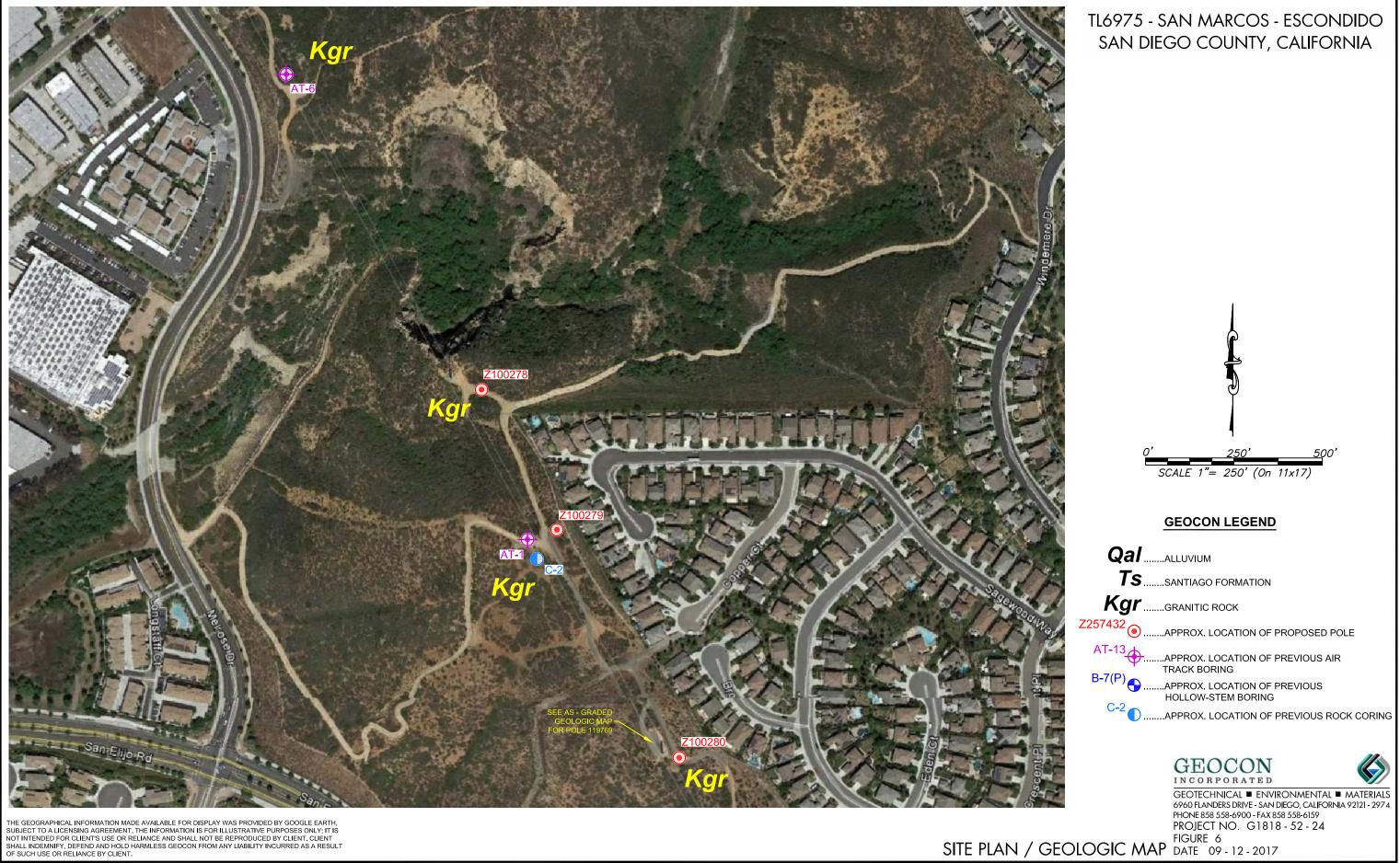


THE BEOGRAPHICAL INFORMATION INVALUE AVAILABLE FOR DISPLATIVAS FROMEDED BY BOOGLE EARTH SUBJECT TO A LICENSING AGREEMENT. THE INFORMATION IS FOR ILLUSTRATIVE PURPOSES ONLY: IT IS NOT INTENDED FOR CLIENT'S USE OR RELIANCE AND SHALL NOT BE REPRODUCED BY CLIENT. CLIENT SHALL INDEMNIFY, DEFEND AND HOLD HARMLESS GEOCON FROM ANY LIABILITY INCURRED AS A RESULT OF SUCH USE OR RELIANCE BY CLIENT.

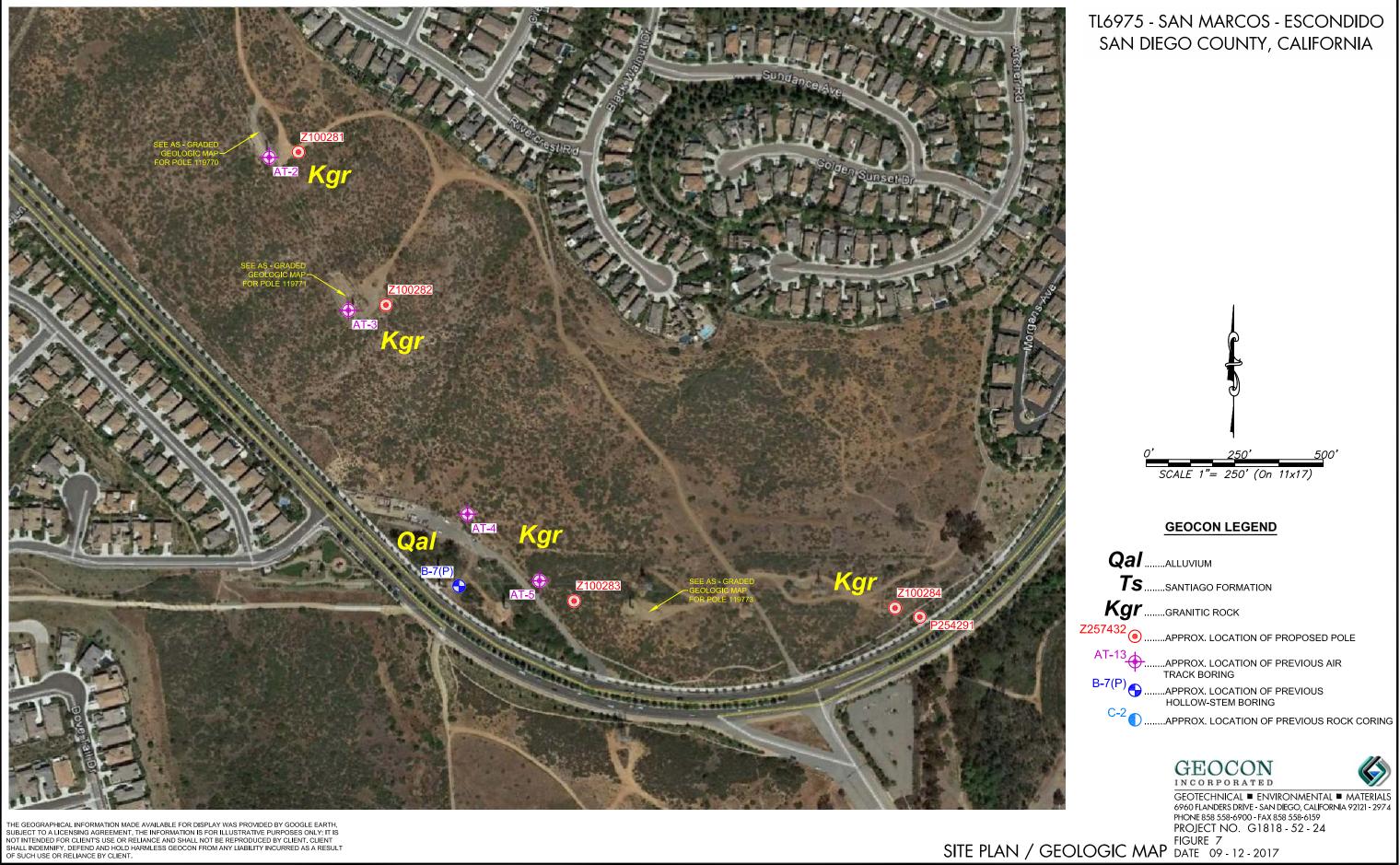
Plotted:09/12/2017 9:14AM | By:ALVIN LADRILLONO | File Location:Y:\PROJECTS\G1818-52-24 TL6975\SHEETS\G1818-52-24_GEO-MAP.dwg


THE GEOGRAPHICAL INFORMATION MADE AVAILABLE FOR DISFLAT WAS PROVIDED BY GEOGLE EARTH, SUBJECT TO A LICENSING AGREEMENT. THE INFORMATION IS FOR ILLUSTRATIVE PURPOSES ONLY: IT IS NOT INTENDED FOR CLIENT'S USE OR RELIANCE AND SHALL NOT BE REPRODUCED BY CLIENT, CLIENT SHALL INDEMNIFY, DEFEND AND HOLD HARMLESS GEOCON FROM ANY LIABILITY INCURRED AS A RESULT OF SUCH USE OR RELIANCE BY CLIENT.

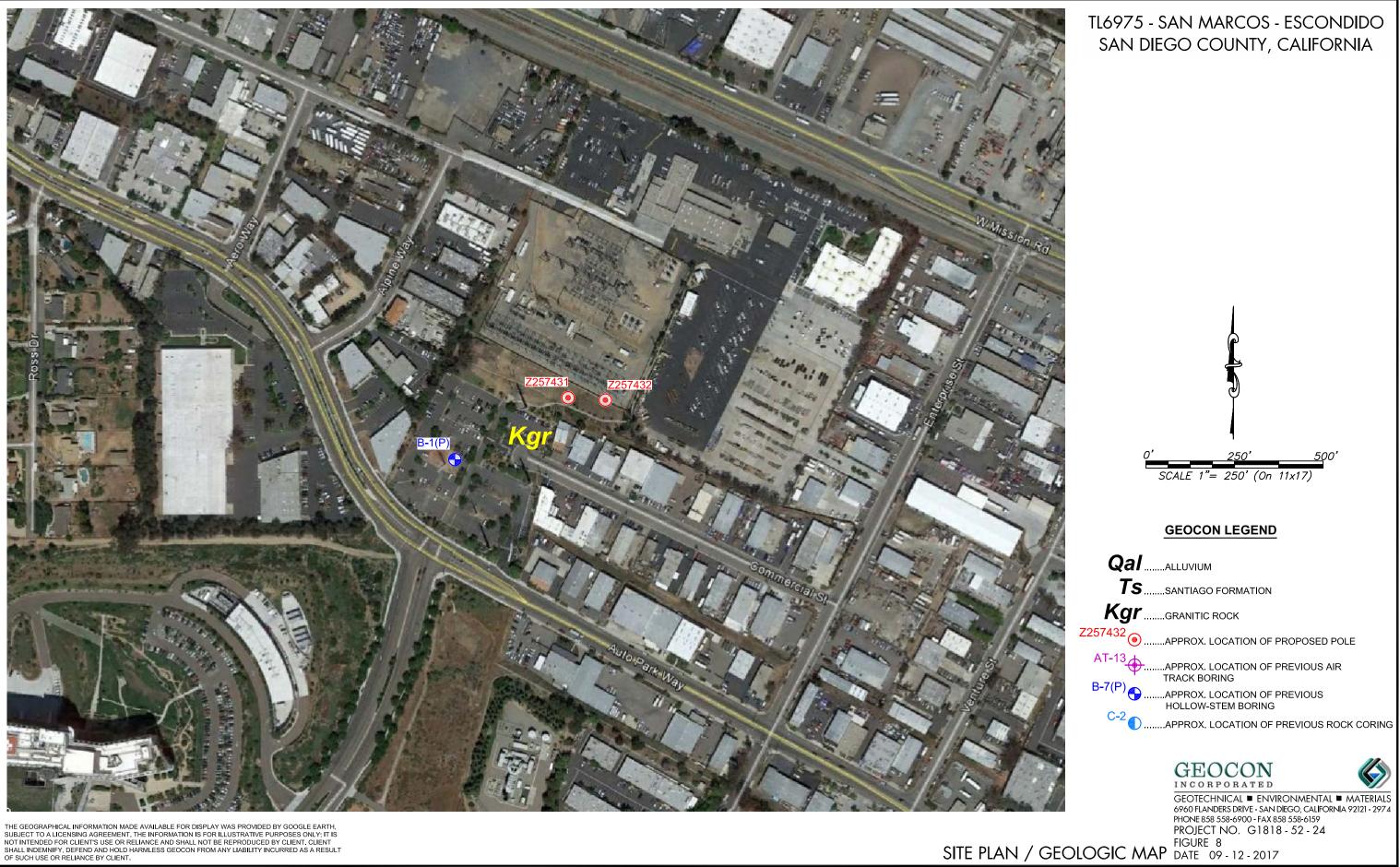
Plotted:09/12/2017 9:09AM | By:ALVIN LADRILLONO | File Location:Y:\PROJECTS\G1818-52-24 TL6975\SHEETS\G1818-52-24_GEO-MAP.dwg


THE GEOGRAPHICAL INFORMATION MADE AVAILABLE FOR DISFLAT WAS PROVIDED BY GEOGLE EARTH, SUBJECT TO A LICENSING AGREEMENT. THE INFORMATION IS FOR ILLUSTRATIVE PURPOSES ONLY: IT IS NOT INTENDED FOR CLIENT'S USE OR RELIANCE AND SHALL NOT BE REPRODUCED BY CLIENT, CLIENT SHALL INDEMNIFY, DEFEND AND HOLD HARMLESS GEOCON FROM ANY LIABILITY INCURRED AS A RESULT OF SUCH USE OR RELIANCE BY CLIENT.

Plotted:09/12/2017 9:07AM | By:ALVIN LADRILLONO | File Location:Y:\PROJECTS\G1818-52-24 TL6975\SHEETS\G1818-52-24_GEO-MAP.dwg


Plotted:09/12/2017 9:06AM | By:ALVIN LADRILLONO | File Location:Y:\PROJECTS\G1818-52-24 TL6975\SHEETS\G1818-52-24_GEO-MAP.dwg

THE GEOGRAPHICAL INFORMATION MADE AVAILABLE FOR DISFLAT WAS PROVIDED BY GEOGLE EARTH, SUBJECT TO A LICENSING AGREEMENT. THE INFORMATION IS FOR ILLUSTRATIVE PURPOSES ONLY: IT IS NOT INTENDED FOR CLIENT'S USE OR RELIANCE AND SHALL NOT BE REPRODUCED BY CLIENT, CLIENT SHALL INDEMNIFY, DEFEND AND HOLD HARMLESS GEOCON FROM ANY LIABILITY INCURRED AS A RESULT OF SUCH USE OR RELIANCE BY CLIENT.

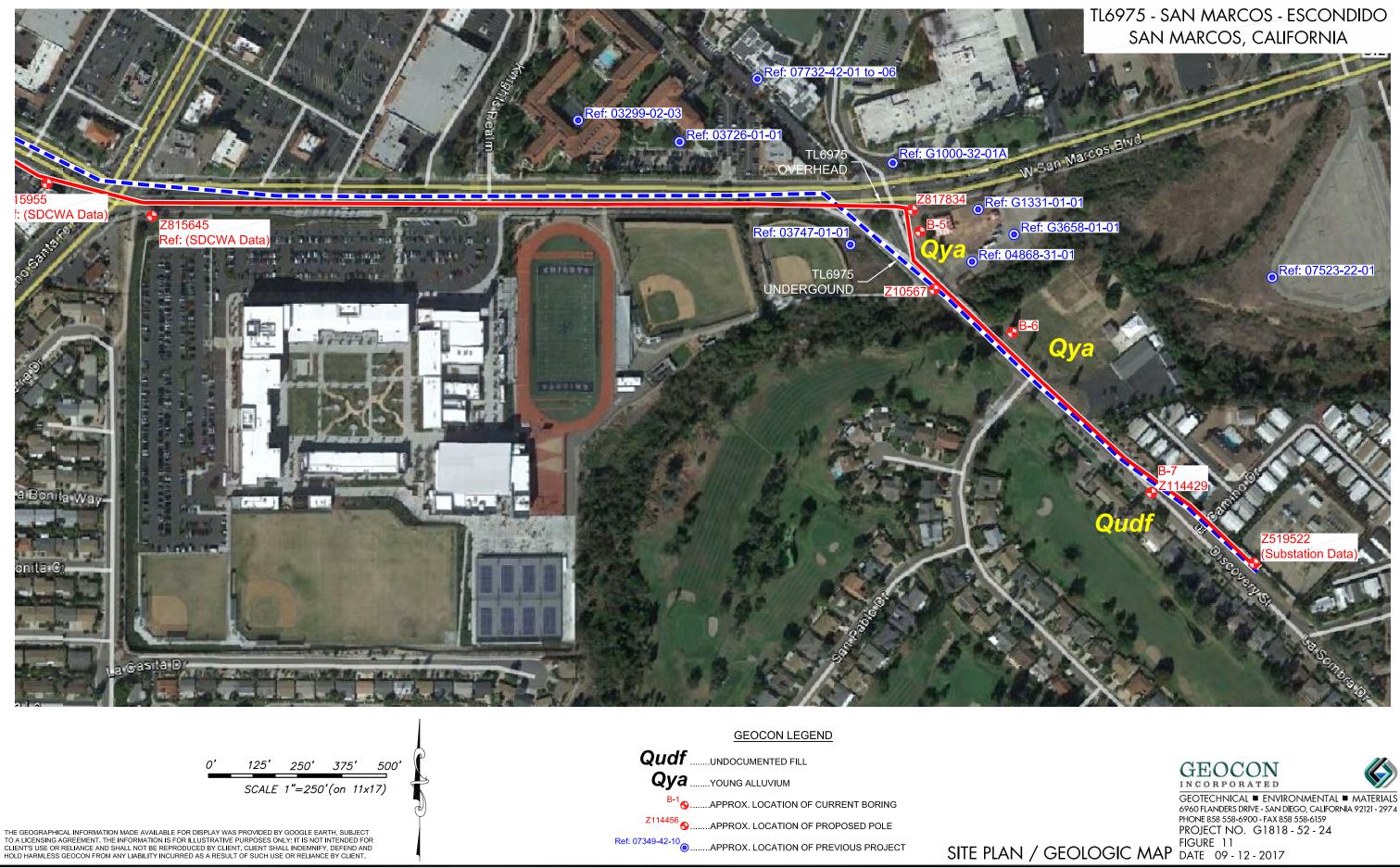


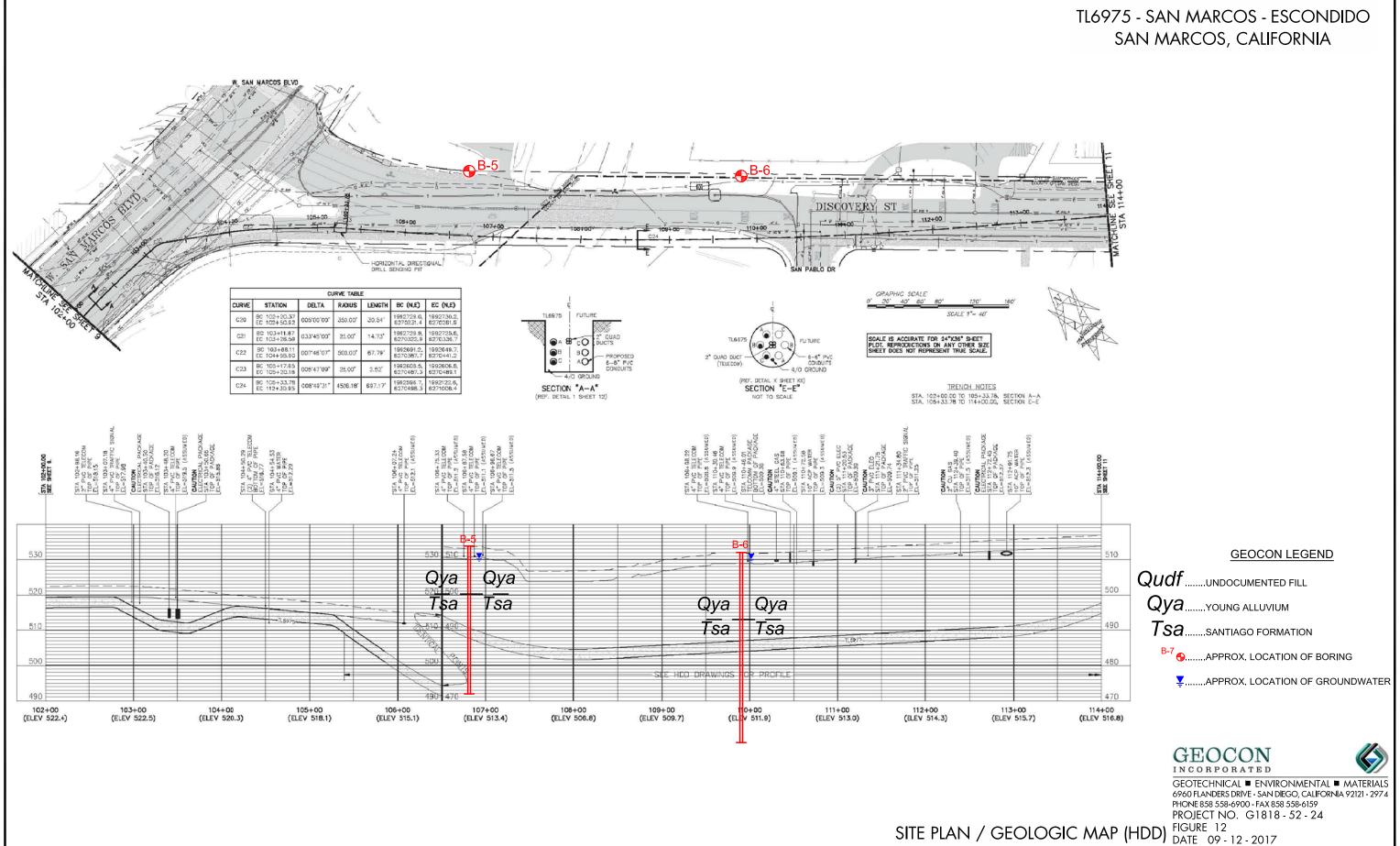
Plotted:09/12/2017 9:06AM | By:ALVIN LADRILLONO | File Location:Y:\PROJECTS\G1818-52-24 TL6975\SHEETS\G1818-52-24_GEO-MAP.dwg


THE GEOGRAPHICAL INFORMATION MADE AVAILABLE FOR DISFLAT WAS PROVIDED BY GEOGLE EARTH, SUBJECT TO A LICENSING AGREEMENT. THE INFORMATION IS FOR ILLUSTRATIVE PURPOSES ONLY: IT IS NOT INTENDED FOR CLIENT'S USE OR RELIANCE AND SHALL NOT BE REPRODUCED BY CLIENT, CLIENT SHALL INDEMNIFY, DEFEND AND HOLD HARMLESS GEOCON FROM ANY LIABILITY INCURRED AS A RESULT OF SUCH USE OR RELIANCE BY CLIENT.

Plotted:09/12/2017 9:05AM | By:ALVIN LADRILLONO | File Location:Y:\PROJECTS\G1818-52-24 TL6975\SHEETS\G1818-52-24_GEO-MAP.dwg

THE BEOGRAPHICAL INFORMATION INVALUE AVAILABLE FOR DISPLATIVAS FROMEDED BY BOOGLE EARTH SUBJECT TO A LICENSING AGREEMENT. THE INFORMATION IS FOR ILLUSTRATIVE PURPOSES ONLY: IT IS NOT INTENDED FOR CLIENT'S USE OR RELIANCE AND SHALL NOT BE REPRODUCED BY CLIENT. CLIENT SHALL INDEMNIFY, DEFEND AND HOLD HARMLESS GEOCON FROM ANY LIABILITY INCURRED AS A RESULT OF SUCH USE OR RELIANCE BY CLIENT.


Plotted:09/12/2017 9:04AM | By:ALVIN LADRILLONO | File Location:Y:\PROJECTS\G1818-52-24 TL6975\SHEETS\G1818-52-24_GEO-MAP.dwg


Plotted:09/12/2017 9:18AM | By:ALVIN LADRILLONO | File Location:Y:\PROJECTS\G1818-52-24 TL6975\SHEETS\G1818-52-24 Geo Map (Suplemental).dwg

Plotted:09/12/2017 9:16AM | By:ALVIN LADRILLONO | File Location:Y:\PROJECTS\G1818-52-24 TL6975\SHEETS\G1818-52-24 Geo Map (Suplemental).dwg

Plotted:09/12/2017 9:17AM | By:ALVIN LADRILLONO | File Location:Y:\PROJECTS\G1818-52-24 TL6975\SHEETS\G1818-52-24 Geo Map (Suplemental).dwg

Plotted:09/12/2017 9:21AM | By:ALVIN LADRILLONO | File Location:Y:\PROJECTS\G1818-52-24 TL6975\SHEETS\G1818-52-24 Base Map.dwg

THE GEOGRAPHICAL INFORMATION MADE AVAILABLE FOR DISPLAY WAS PROVIDED BY GOOGLE EARTH, SUBJECT TO A LICENSING AGREEMENT. THE INFORMATION IS FOR ILLUSTRATIVE PURPOSES ONLY; IT IS NOT INTENDED FOR CLIENT'S USE OR RELIANCE AND SHALL NOT BE REPRODUCED BY CLIENT. CLIENT SHALL INDEMNIFY, DEFEND AND HOLD HARMLESS GEOCON FROM ANY LIABILITY INCURRED AS A RESULT OF SUCH USE OR RELIANCE BY CLIENT.

CURVE TABLE

500.00'

25.00

004'59'31'

onno'no"

DIRECTIONAL DRILL RECEIVING PIT

DELTA RADIUS LENGTH BC (N,E) EC (N,E)

43.56"

39.27*

DISCONB

1991955.2, 6271219.1

STA 116+20.00

SEE DETAIL G

1991874.05

7 ST

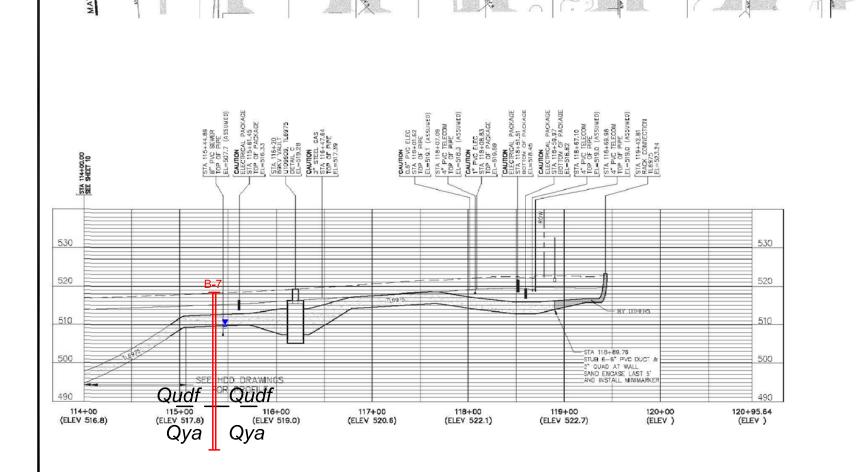
1991925.6 6271252.0

91728.

CURVE

025

C26


2 144 STA

STATION

BC 118+32.96 EC 118+72.23

115+00.04

STA 119+42.81 SAN MARCOS SUBSTATION RACK

E . 0

STA 118+89.76 STUB 6-6" PVC DUCT & 2" QUAD AT WALL SAND ENCASE LAST 5" AND INSTALL MINIMARKED

111

to:

B

É

n

L

ID

in

0

(1)

-

1.683

OPEN

TL6975 FUTURE BO PROPOSEL 6-6" PVC AO 4 /O GROUND SECTION "A-A"

AC SURFACE

FIELD FIT 3313HH

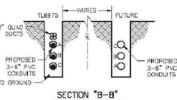
FUTURE

(REF. DETAIL 1 SHEET 12)

c 00

00 B B 00 00 A 00

STA. 116+20.00 & VAULT U103608 TLB975 65KV VAULT AND PHASING. REF. SDG&E STANDARD DWG. No. 34002, 34005 DETAIL "C"


NOT TO SCALE

00 00 A

4/0 GROU

TL6975

GRAPHIC SCALE

8 8

C CA

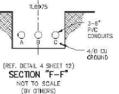
NOT TO SCALE

TI 6975

2" OUAD DUCT (TELECOM)

SCALE I'= 40 SCALE IS ACCURATE FOR 24*X36* SHEET PLOT. REPRODUCTIONS ON ANY OTHER SIZE SHEET DOES NOT REPRESENT TRUE SCALE.

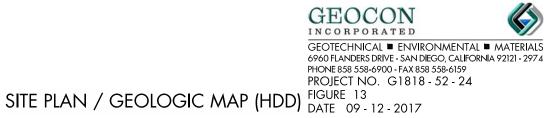
 $\begin{array}{l} 114+00.00 \text{ TO } 115+01.90, \quad \text{SECTION } E-E \\ 115+01.99 \text{ TO } 115+B4.79, \quad \text{SECTION } A-A \\ 115+B4.79 \text{ TO } 16+11.40, \quad \text{SECTION } B-B \\ 116+11.40 \text{ TO } 16+28.40, \quad \text{DETAI, } C \\ 116+28.40, \quad \text{DETAI, } C \\ 116+28.52 \text{ TO } 116+73.02, \quad \text{SECTION } A-A \\ 116+75.02 \text{ TO } 116+73.02, \quad \text{SECTION } F-F \\ 116+75.02 \text{ TO } 119+73.02, \quad \text{SECTION } F-F \\ \end{array}$


TL6975 - SAN MARCOS - ESCONDIDO SAN MARCOS, CALIFORNIA

(REF. DETAIL 2 SHEET 12)

6-6" PVC CONDUITS - 4/0 GROUND (REF. DETAIL X SHEET XX) SECTION "E-E"

GEOCON LEGEND


Qudf......UNDOCUMENTED FILL

Qya......YOUNG ALLUVIUM

Tsa......santiago formation

B-7 APPROX. LOCATION OF BORING

▼......APPROX. LOCATION OF GROUNDWATER

Plotted:09/12/2017 9:21AM | By:ALVIN LADRILLONO | File Location:Y:\PROJECTS\G1818-52-24 TL6975\SHEETS\G1818-52-24 Base Map.dwg

APPENDIX A

FIELD INVESTIGATION

We performed our field investigation on June 26, 27 and 28, 2017, which consisted of a site reconnaissance, and drilling 8 exploratory borings to a maximum depth of approximately 54 feet below the existing ground surface using a high-torque drill rig equipped with 8-inch-diameter, hollow-stem-auger. The locations of the exploratory borings are shown on the *Site Plan/Geologic Map*, Figures 9, 10, and 11. Boring logs are presented on Figures A-1 through A-8 following the text in this appendix. We located the borings in the field using a measuring tape and existing reference points provided by the project civil engineer. Therefore, actual boring locations may deviate slightly. Elevations shown on the boring logs were estimated from a topographic map.

We obtained samples during our boring excavations using a California split-spoon sampler or a Standard Penetration Test (SPT) sampler. Both samplers are composed of steel and are driven to obtain the soil samples. The California sampler has an inside diameter of 2.5 inches and an outside diameter of 2.875 inches. Up to 18 rings are placed inside the sampler that is 2.4 inches in diameter and 1 inch in height. The SPT sampler has an inside diameter of 1.5 inches and an outside diameter of 2 inches. Ring samples at appropriate intervals were retained in moisture-tight containers and transported to the laboratory for testing. We also retained bulk samples from the borings for laboratory testing. The type of sample is noted on the exploratory boring logs. The samplers were driven 12 and 18 inches using the California and SPT samplers, respectively, into the bottom of the excavations with the use of a Cathead hammer and the use of A rods. The sampler is connected to the A rods and driven into the bottom of the excavation using a 140-pound hammer with a 30-inch drop. Blow counts are recorded for every 6 inches the sampler is driven. The penetration resistances shown on the boring logs are shown in terms of blows per foot. The values indicated on the boring logs are the sum of the last 12 inches of the sampler if driven 18 inches. If the sampler was not driven for 18 inches, an approximate value is calculated in term of blows per foot or the final 6-inch interval is reported. These values are not to be taken as N-values, adjustments have not been applied.

We visually examined, classified, and logged the soil encountered in the borings in general accordance with American Society for Testing and Materials (ASTM) practice for Description and Identification of Soils (Visual-Manual Procedure D 2488). The logs depict the soil and geologic conditions observed and the depth where we obtained samples.

DEPTH IN FEET	SAMPLE NO.	ГІТНОГОБУ	GROUNDWATER	SOIL CLASS (USCS)	BORING B 1 ELEV. (MSL.) DATE COMPLETED 06-26-2017 EQUIPMENT Diedrich D-50 with 8" HSA BY: K. JAMES	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
0 -					MATERIAL DESCRIPTION			
2 -	B1-1			SM	UNDOCUMENTED FILL (Qudf) Medium dense, damp, yellowish brown, Silty, fine to medium SAND	-		
4 6	B1-2				-Moist	30	93.1	15.7
8 – 10 –			· · · · · · · · · · · · · · · · · · ·	SM	SANTIAGO FORMATION (Tsa) Dense, damp, light gray, Silty, fine to medium SANDSTONE	_		
10 -	B1-3		> > > > > >		-Moist	56 	116.9	10.9
14 – – 16 –	B1-4				-Becomes medium dense, fine to coarse	- 39 -	111.1	5.6
18 – –	B1-5					_ _ 40	110.2	4.1
					BORING TERMINATED AT 19.5 FEET Groundwater not encountered Backfilled with soil cuttings			
laur							0404	0.50.04.1
og of	e A-1, f Borin	g B 1	I, F	Page 1	of 1		G181	8-52-24.0
_	PLE SYME			SAMP		Sample (Undi		

DEPTH		ОGY	GROUNDWATER	SOIL	BORING B 2	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
IN FEET	SAMPLE NO.	ГІТНОГОСУ	NDV	CLASS (USCS)	ELEV. (MSL.) DATE COMPLETED 06-28-2017	JETR/ SIST/ OWS	Y DEN (P.C.I	IOISTI NTEN
			GRO		EQUIPMENT Diedrich D-50 with 8" HSA BY: K. HAASE	- BE	DR	≥o
0 –					MATERIAL DESCRIPTION			
2 -	B2-1			SM	UNDOCUMENTED FILL (Qudf) Medium dense, moist, yellowish brown, Silty, fine to medium SAND with some clay	-		
4 -	B2-2				-Becomes very dense, pale yellow; high blow counts due to rock in shoe	- - 64/10"	103.9	11.1
6 - 8 -							100.5	
- 10 -	B2-3				-Becomes medium dense, yellowish brown, fine grained	- - 21		
						-		
14 – – 16 –	B2-4		· · ·	SM	SANTIAGO FORMATION (Tsa) Dense, moist, olive, Silty, fine grained SANDSTONE	65	109.7	18.9
_ 18 _	B2-5		•		-Becomes very dense, moist, yellowish brown	_ _ 50/5"		
					BORING TERMINATED AT 19.5 FEET Groundwater not encountered			
igure og of	e A-2, f Boring	a B 2	2. F	Page 1	of 1		G181	8-52-24.0
-	LE SYMB	_	-, •	_		SAMPLE (UNDIS		

DEPTH		β	GROUNDWATER	SOIL	BORING B 3	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
IN FEET	SAMPLE NO.	гітногоду	, MDN	CLASS	ELEV. (MSL.) DATE COMPLETED 06-26-2017	ETRA SISTAI OWS/	DEN P.C.F	DISTU
			GROL	(USCS)	EQUIPMENT Diedrich D-50 with 8" HSA BY: K. JAMES	PENI RES (BL(DRY)	¥00 N N N N N N N N N N N N N N N N N N N
			$\left \right $		MATERIAL DESCRIPTION			
0 –	B3-1			SC	3.5" ASPHALT CONCRETE			
2 -					UNDOCUMENTED FILL (Qudf) Mediuim dense, moist, brown, Clayey, fine to coarse SAND	_		
4 -						-		
_	B3-2					66/11"	116.7	17.3
6 -				SC	SANTIAGO FORMATION (Tsa) Very dense, damp to moist, light grayish brown, Clayey, fine to medium SANDSTONE	-		
- 10 -						-		
_	B3-3					_ 86/8"	107.5	12.6
12 –					-Very difficult drilling	-		
14 – _	B3-4				-Becomes fine to coarse	- - 95/10"	121.4	7.8
16 – –	B3-4				-Decomes mile to coarse	- -	121.4	7.0
18 – –	B3-5				-Becomes dense, moist, light grayish brown to reddish brown	- _ 57	113.4	16.8
					BORING TERMINATED AT 19.5 FEET Groundwater not encountered Backfilled with soil cuttings			
igure	e A-3, f Boring	a B :	3. F	Page 1	of 1	-	G181	8-52-24.0
	PLE SYMB		-, •		LING UNSUCCESSFUL	SAMPLE (UNDIS	STURBED)	

DEPTH IN FEET	SAMPLE NO.	ГІТНОГОБУ	GROUNDWATER	SOIL CLASS (USCS)	BORING B 5 ELEV. (MSL.) DATE COMPLETED 06-27-2017 EQUIPMENT Diedrich D-50 with 8" HSA BY: K. HAASE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
- 0 -					MATERIAL DESCRIPTION			
	B5-1			CL	TOPSOIL Soft, moist, dark brown, fine Sandy CLAY	_		
				SM	YOUNG ALLUVIUM (Qya)	_		
 - 6 - 	B5-2				Medium dense, moist, light brown to light reddish brown, Silty, fine to medium SAND	26 	116.8	15.6
- 8 -						-		
- 10 – - – – - 12 –	В5-3				-Becomes wet, light brown, coarse grained	15		
- 12 - - 14 -			•	SM	SANTIAGO FORMATION (Tsa)	_		
	B5-4		•	3141	Dense, moist, yellowish brown to pale yellow, Silty, fine- to medium-grained SANDSTONE	51 	114.3	16.9
- 18 – - 18 –			•			-		
20 -	B5-5		•		-Becomes very dense, damp, coarse grained	64 		
- 22 - - 24 -								
	B5-6				-Becomes dense, finer grained	61 	112.0	15.7
 - 28 - 						-		
Figure Log of	A-4, f Boring	g B 5	5, F	Page 1	of 2		G181	8-52-24.G
-	PLE SYMB	_	-	SAMP		AMPLE (UNDI		

·		1	-					
DEPTH		βGY	GROUNDWATER	SOIL	BORING B 5	TION NCE FT.)	SITY .)	RE Г (%)
IN FEET	SAMPLE NO.	ГІТНОГОСУ	MDN	CLASS (USCS)	ELEV. (MSL.) DATE COMPLETED 06-27-2017	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			GROL	(0000)	EQUIPMENT Diedrich D-50 with 8" HSA BY: K. HAASE	PEN (BL	DRY	COL
					MATERIAL DESCRIPTION			
- 30 -	B5-7				-Becomes very dense, moist, light reddish brown, coarser grained	67/6"		
 - 32 -						_		
						_		
- 34 -						_		
	B5-8				-Becomes yellowish brown	- 81/9"	116.2	15.5
- 36 -						-		
						-		
- 38 -			, , ,			_		
- 40 -								
	B5-9		, , ,		-Becomes olive, finer grained	50 -		
- 42 -			, ,		BORING TERMINATED AT 42 FEET			
					Groundwater encountered at 4.5 feet Backfilled with 14.6 ft ³ of bentonite grout			
Figure	⊢⊥ ∋ A-4.						G181	8-52-24.GPJ
Log o	fBoring	g B 🗧	5, F	Page 2	of 2			
SAMP	LE SYMB	OLS				ample (undi		
				🕅 DISTL	JRBED OR BAG SAMPLE 🛛 🛛 CHUNK SAMPLE 🖉 WATER	TABLE OR SE	EPAGE	

DEPTH IN SAMPLE FEET NO.	GROUNDWATER	SOIL CLASS (USCS)	BORING B 6 ELEV. (MSL.) DATE COMPLETED 06-27-2017 EQUIPMENT Diedrich D-50 with 8" HSA BY: K. HAASE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
0			MATERIAL DESCRIPTION			
B6-1 2 -		SC	TOPSOIL Loose, moist, dark brown, Clayey, fine SAND; trace roots	_		
4 - B6-2	Ţ	SM	YOUNG ALLUVIUM (Qya) Loose, saturated, gray, Silty, fine to medium SAND	- 5		
6 – Contraction (1997) – Contraction (1997) 8 – Contraction (1997)				-		
			-No recovery	3		
12 - B6-4			-No recovery	- - 7		
14 – B6-5 16 –			-Loose, saturated, light bluish gray, fine to coarse SAND	- - 9 -		
-	*	SM	SANTIAGO FORMATION (Tsa)	-		
20 – – B6-6	• • • • •	5141	Very dense, moist, light olive to olive brown, Silty, fine- to coarse-grained SANDSTONE	78 		
22 – – 24 –				-		
B6-7	• • • • • •		-Becomes dense, light olive gray, finer grained	55 	113.0	17.8
28 -				-		
igure A-5,	Ľ	1		1	G181	8-52-24.0

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

... DISTURBED OR BAG SAMPLE

... CHUNK SAMPLE

... WATER TABLE OR SEEPAGE

DEPTH		уду	GROUNDWATER	SOIL	BORING B 6	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
IN FEET	SAMPLE NO.	ГІТНОГОСУ	MDNU	CLASS (USCS)	ELEV. (MSL.) DATE COMPLETED 06-27-2017	IETRA SISTA OWS	Y DEN (P.C.F	OISTU
			GRO	、 <i>,</i>	EQUIPMENT Diedrich D-50 with 8" HSA BY: K. HAASE	BE PER	DR	≥o
20					MATERIAL DESCRIPTION			
- 30 - 	B6-8		0 0 0		-Becomes very dense, wet, light olive brown, coarser grained	50/6" _	114.4	16.6
- 32 -			0 0 0			-		
- 34 -			0 0 0					
	B6-9		0 0 0 0		-Becomes moist, pale yellow	58 		
 - 38			• • • •	$-\frac{1}{SC}$	Dense, damp, dark bluish gray, fine Sandy SILTSTONE			
						-		
- 40 -	B6-10		•			32 		
- 42 – - –			-			-		
- 44 -				- <u></u>	Dense, damp, bluish gray, Silty, fine SANDSTONE			
- 46 -	B6-11		0 0 0			31 		
	Γ		。 。 。			-		
- 48 – - –			0 0 0			-		
- 50 -	B6-12		0 0 0		-Becomes very dense	57		
- 52 –			0 0 0			-		
- 54 -			。 。 。					
					BORING TERMINATED AT 54 FEET Groundwater encountered at 4 feet Backfilled with 18.8 ft ³ of bentonite grout			
Figure	A-5, f Boring	gB(6, F	Page 2	of 2	-	G181	8-52-24.GP
_	LE SYMB	_	·			SAMPLE (UNDIS	STURBED)	

DEPTH	SAMPLE	.0GY	GROUNDWATER	SOIL	BORING B 7	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
IN FEET	NO.	гітногобу	ND	CLASS (USCS)	ELEV. (MSL.) DATE COMPLETED 06-28-2017	NETR SIST, LOWS	ξΥ DE (P.C.	
			GRO		EQUIPMENT Diedrich D-50 with 8" HSA BY: K. HAASE	- PEr BE	DR	20
- 0 -					MATERIAL DESCRIPTION			
-					9" ASPHALT AND BASE			
- 2 - - 2 -	B7-1			SC	UNDOCUMENTED FILL (Qudf) Loose, moist, dark brown, Clayey, fine to medium SAND	2		
- 4 -						-		
- 6 -	B7-2				-Becomes wet	5 - -	102.0	27.7
- 8 -			Ţ			-		
- 10 – - –	B7-3				-Becomes saturated, brown, sandy clay pocket	- 5 -		
12 -	ſ					-		
· 14 –	B7-4				-No recovery	- - 11		
- 16 – - –						-		
· 18 –						-		
20 -	B7-5				-Becomes medium dense, silty	22	111.2	22.6
- 24 -								
- ·	B7-6				-Becomes wet, dark gray, finer grained	27		
 - 28 -								
			$\left - \right $	- <u>SM</u>	YOUNG ALLUVIUM (Qya)	+		+
igure	A-6, f Boring	a R 7	7 6	Page 1	of 2	1	G181	I 18-52-24.0
-		_	, r			SAMPLE (UNDI	STURBED)	

		_	_					
DEPTH IN FEET	SAMPLE NO.	ПТНОГОGY	GROUNDWATER	SOIL CLASS (USCS)	BORING B 7 ELEV. (MSL.) DATE COMPLETED 06-28-2017	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			GR(EQUIPMENT Diedrich D-50 with 8" HSA BY: K. HAASE	ВЧ В	Ō	_ O
					MATERIAL DESCRIPTION			
- 30 -	B7-7				Dense, moist, light to medium gray, Silty, fine to medium SAND	70	104.1	20.4
 - 32 -			-			-		
- 34 -						_		
	B7-8				-Becomes very dense, light gray, finer grained	60		
- 36 -						_		
						_		
- 38 -						-		
						_		
- 40 -	B7-9				-No recovery	50/2"		
					BORING TERMINATED AT 41 FEET Groundwater encountered at 8 feet Backfilled with 14.3 ft ³ of bentonite grout			
Figure	f Boring	gB7	7, F	Page 2	of 2		0.01	8-52-24.GPJ
_		_		_		AMPLE (UNDI	STURBED)	
SAMP	PLE SYME	BOLS						

DEPTH IN FEET	SAMPLE NO.	ГІТНОГОGY	GROUNDWATER	SOIL CLASS (USCS)	BORING B 9 ELEV. (MSL.) DATE COMPLETED 06-26-2017 EQUIPMENT Diedrich D-50 with 8" HSA BY: K. JAMES	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)		
0 -					MATERIAL DESCRIPTION					
2 -	B9-1			SC	UNDOCUMENTED FILL (Qudf) Medium dense, moist, dark brown to light brown, Clayey, fine to medium SAND	-				
4 –	В9-2						118.1	13.(
6 – – 8 –				SC	SANTIAGO FORMATION (Tsa) Very dense, moist, light grayish brown to reddish brown, Clayey, fine to medium SANDSTONE	-				
	В9-3		* • • • • • • • • • • • • • • • • • • •	<u>-</u>	Dense, moist, light gray, Silty, fine to SANDSTONE	48	_ 109.7	13.7		
12 – – 14 –			· · · · · · · · · · · · · · · · · · ·			-				
	B9-4		· • • • •			 	108.9	18.		
18 -	B9-5		。 。 。			66/10.5"	114.0	16.3		
		<u> </u>			BORING TERMINATED AT 19.5 FEET Groundwater not encountered Backfilled with soil cuttings					
igure	e A-7,				- 6 4		G181	8-52-24.0		
.og o	f Boring	g B S	9, F	_						
SAMPLE SYMBOLS					SAMPLING UNSUCCESSFUL STANDARD PENETRATION TEST DRIVE SAMPLE (UNDISTURBED) DISTURBED OR BAG SAMPLE CHUNK SAMPLE WATER TABLE OR SEEPAGE					

DEPTH IN FEET	Sample NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	BORING B 10 ELEV. (MSL.) DATE COMPLETED 06-26-2017 EQUIPMENT Diedrich D-50 with 8" HSA BY: K. JAMES	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
					MATERIAL DESCRIPTION			
0 -				SM	UNDOCUMENTED FILL (Qudf) Medium dense, moist, yellowish brown, Silty, fine to medium SAND	_		
2 - - 4 -			· · · · · · · · · · · · · · · · · · ·	SM	SANTIAGO FORMATION (Tsa) Medium dense, moist, yellowish brown and light gray, mottle, Silty, fine to medium SANDSTONE	-		
- 6 - -	B10-1		•			- 46 -	108.0	16.1
8 -				- _{SC} -	Medium dense, moist, reddish brown and light gray mottled, Clayey, fine to medium SANDSTONE	++ -		
10 -	B10-2					28	105.3	20.
12 – – 14 –						-		
- 16 -	B10-3		/ / / /	<u>-</u>	Dense, moist, light gray, Silty, fine to coarse SANDSTONE	68	122.1	10.
18 – –	B10-4		•			_ _ 64	109.0	18.
					BORING TERMINATED AT 19.5 FEET Groundwater not encountered Backfilled with soil cuttings			
igure	e A-8, f Boring	1 R 1	0	Pane 1	of 1		G181	8-52-24.
-		-		SAMP		Sample (Undis	STURBED)	

APPENDIX B

LABORATORY TESTING

We performed laboratory testing to evaluate the physical and mechanical properties of the soil and formational materials encountered at the site. We performed the laboratory tests in accordance with the current versions of the generally accepted *American Society for Testing Materials* (ASTM) procedures or other suggested procedures. We tested selected soil samples for their in-situ dry density and moisture content, shear strength, plasticity index, gradation, expansion index, maximum dry density and optimum moisture content, and corrosion potential. The results of our laboratory tests are presented in Tables B-I through B-VI and on Figure B-1. In addition, the in-situ dry density and moisture content are presented on the exploratory boring logs in Appendix A.

Sample	Depth	Geologic	Dry	Moisture	Content (%)	Peak	Peak [Ultimate ¹]
No.	(feet)	Unit	Density (pcf)	Initial	Final	[Ultimate ¹] Cohesion (psf)	Angle of Shear Resistance (degrees)
B1-2	5	Qudf	93.1	15.7	26.5	740 [680]	31 [31]
B1-3	10	Tsa	116.9	10.9	15.6	570 [580]	43 [30]
B1-4	15	Tsa	111.1	5.6	15.7	1120 [570]	30 [33]
B1-5	18.5	Tsa	110.2	4.1	17.2	520 [440]	38 [36]
B2-2	5	Qudf	103.9	11.1	19.5	380 [440]	36 [32]
B2-4	15	Tsa	109.7	18.9	21.3	1080 [1240]	44 [28]
B3-2	5	Tsa	116.7	17.3	20.9	1470 [980]	28 [31]
B3-3	10	Tsa	107.5	12.6	20.0	670 [530]	35 [30]
B3-4	15	Tsa	121.4	7.8	12.8	260 [520]	43 [35]
B3-5	18.5	Tsa	113.4	16.8	18.5	690 [490]	41 [32]
B5-2	5	Qya	116.8	15.6	18.1	1320 [1310]	17 [17]
B5-4	15	Tsa	114.3	16.9	17.9	760 [290]	33 [34]
B5-6	25	Tsa	112.0	15.7	18.2	1280 [530]	36 [32]
B5-8	35	Tsa	116.2	15.5	16.7	830 [600]	43 [37]
B6-7	25	Tsa	113.0	17.8	19.1	370 [270]	34 [34]
B6-8	30	Tsa	114.4	16.6	16.5	700 [290]	41 [40]
B7-2	5	Qudf	102.0	27.7	25.9	300 [300]	26 [26]
B7-5	20	Qudf	111.2	22.6	20.9	390 [70]	41 [43]
B7-7	30	Qudf	104.1	20.4	22.5	850 [770]	26 [25]
B9-2	5	Tsa	118.1	13.0	15.1	840 [0]	39 [39]
B9-3	10	Tsa	109.7	13.7	18.1	820 [900]	39 [26]
B9-4	15	Tsa	108.9	18.1	19.7	950 [740]	32 [31]

TABLE B-I SUMMARY OF LABORATORY DIRECT SHEAR TEST RESULTS (ASTM D 3080)

TABLE B-I (Concluded)SUMMARY OF LABORATORY DIRECT SHEAR TEST RESULTS(ASTM D 3080)

Sample	ample Depth (Dry	Moisture Content (%)		Peak	Peak [Ultimate ¹]
No.	(feet)	Geologic Unit	Density (pcf)	Initial	Final	[Ultimate ¹] Cohesion (psf)	Angle of Shear Resistance (degrees)
B9-5	18.5	Tsa	114.0	16.1	18.3	1600 [1200]	27 [24]
B10-1	5	Tsa	108.0	16.7	25.1	90 [680]	49 [28]
B10-2	10	Tsa	105.3	20.9	24.4	1530 [620]	21 [28]
B10-3	15	Tsa	122.1	10.5	13.8	1140 [630]	29 [26]
B10-4	18.5	Tsa	109.0	18.9	20.8	730 [650]	32 [25]

¹Ultimate at end of test at 0.2-inch deflection.

TABLE B-IISUMMARY OF LABORATORY PLASTICITY INDEX TEST RESULTS(ASTM D 4318)

Sample No.	Depth (feet)	Geologic Unit	Liquid Limit	Plastic Limit	Plasticity Index	USCS Classification
B5-3	10	Qya	NP	NP	NP	NP
B6-5	15	Qya	26	19	7	CL
B7-3	10	Qudf	30	21	9	CL

NP = Non-Plastic

TABLE B-IIISUMMARY OF LABORATORY GRAIN SIZE DISTRIBUTION TEST RESULTS
(ASTM D 422)

Sample No.	Depth (feet)	% Gravel	% Sand	% Fines	USCS Classification
B5-3	10	0.0	72.0	28.0	SM
B6-5	15	0.0	62.0	38.0	SC-SM
B7-3	10	0.0	31.1	68.9	CL

TABLE B-IV SUMMARY OF LABORATORY SOIL CORROSION TEST RESULTS (CALIFORNIA TEST NOS. 643, 417, AND 422)

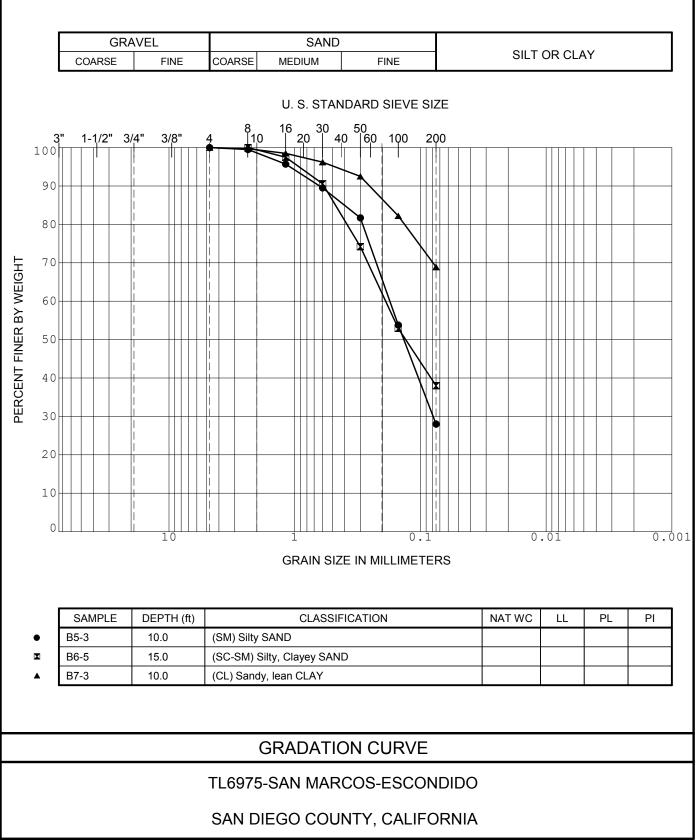

Sample No.	Sample Depth	Resistivity (ohm centimeters)	рН	Chloride Content (ppm)	Sulfate Content (ppm)
B7-1	2	1,500	7.2	90	30
B9-1	0	480	7.6	430	1190

TABLE B-V SUMMARY OF LABORATORY MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE CONTENT TEST RESULTS (ASTM D 1557)

Sample No.	Sample Depth (feet)	Description	Maximum Dry Density (pcf)	Optimum Moisture Content (% dry wt.)
B1-1	0	Yellowish brown, Silty SAND	123.0	11.7
B3-1	0	Brown, Clayey SAND	130.6	8.4
B5-1	1	Dark brown, Sandy CLAY	126.0	10.7
B6-1	1	Dark brown, Clayey SAND	122.6	11.4

TABLE B-VI SUMMARY OF LABORATORY EXPANSION INDEX TEST RESULTS (ASTM D 4829)

Sample No.	Sample Depth (feet)	Expansion Index
B3-1	0	3
B5-1	1	68
B6-1	1	18

G1818-52-24 (2017-09-12 REPORT).GPJ

Figure B-1

GEOCON

APPENDIX C

SELECTED PREVIOUS EXPLORATION LOGS BY GEOCON AND OTHERS

FOR

TL6975 – SAN MARCOS – ENCONDIDO BRADY PROJECT: SDGEC1.078.000 SAN DIEGO COUNTY, CALIFORNIA

PROJECT NO. G1818-52-24

0 CECH MERT INCRECE 0 MATERIAL DESCRIPTION	DEPTH IN FEET	SAMPLE NO	гітногосү	SOIL CLASS (USCS)	BORING B 1 DATE COMPLETED 12-19-2003 EQUIPMENT IR A-300	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
0 BI-1 SC TOPSOIL Solution 2 BI-2 SC SO/4-1/2" 4 BI-2 SC SO/4-1/2" 4 BI-2 SC SO/1" 6 BI-3 F DECOMPOSED GRANITIC ROCK Damp, light orange, highly weathered to decomposed, moderately hard, excavates as Silty, fine to very coarse SAND, some clay SO/1" 8 SO/2" SO/2" SO/2" 10 BI-4 B B 10 BI-4 B B 11 B B B 12 B B B 14 B B B 15 B B B 16 B B B 18 B B B 18 B B B 18 B B B 19 B B B 114 B B B 12 B B B 14 B B B 15 B B B 16 B B B 17 B B B 18 B B </td <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>_</td> <td></td>				0			_	
2 Bi-1 Bi-1 SC SU4-1/2" 4 - - 50 4 - - - 6 - Bi-3 - 9 - - - - - - -	0 -						_	
B1-3 Damp, light orange, highly weathered to decomposed, moderately hard, 50/1" B1-3 Damp, light orange, highly weathered to decomposed, moderately hard, 50/2" B - - B -	2 -			sc		1 1		
$ \begin{array}{c} 10 \\ B1-4 \\ 12 \\ - \\ 14 \\ - \\ B1-5 \\ B1-5 \\ B1-5 \\ B1-5 \\ - \\ - \\ B1-5 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	- s	B1-3			Damp, light orange, highly weathered to decomposed, moderately hard,	1 1		
BI-5 BI-5 BI-5 BI-5 BI-5 BI-5 BI-5 BI-5	- 10 - -	B1-4	d		-Bccomes tan, moist with no clay	- 50/3" -		
BORING TERMINATED AT 19.5 FEET BACKFILLED WITH SOIL CUTTINGS MIXED WITH 1 X 94 Ib SACK OF CEMENT (APPROX. 7 cuft)	-	B1-5				- - 50/1"		
BACKFILLED WITH SOIL CUTTINGS MIXED WITH 1 X 94 lb SACK OF CEMENT (APPROX. 7 cuft)	 18 -		a F			-		
					BACKFILLED WITH SOIL CUTTINGS MIXED WITH 1 X 94 Ib SACK OF CEMENT			

Figure A-1, Log of Boring B 1, Page 1 of 1

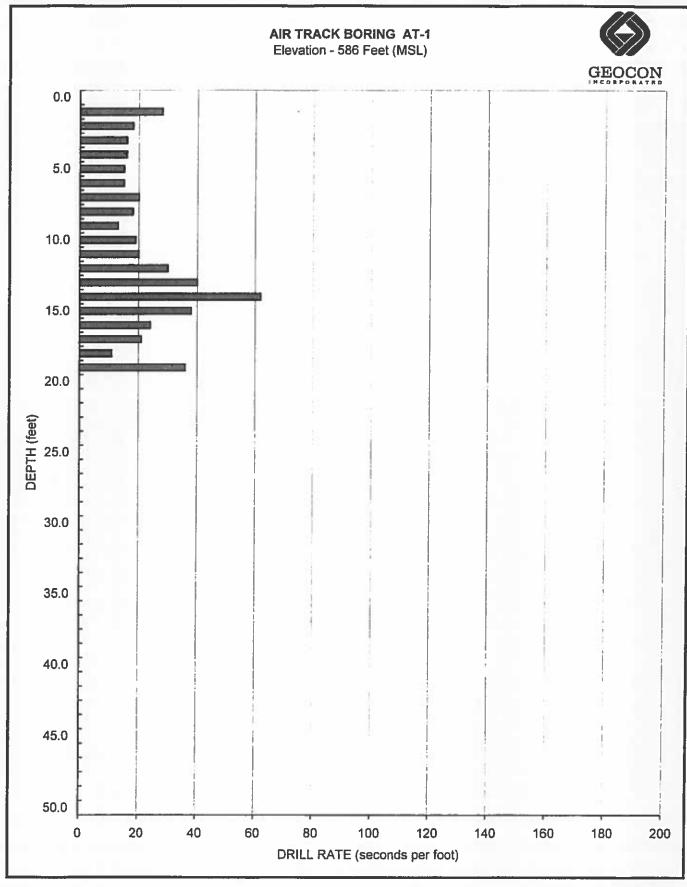
SAMPLE SYMBOLS		DRIVE SAMPLE (UNDISTURBED)
	S DISTURBED OR BAG SAMPLE	VATER TABLE OR SEEPAGE

PROJECT NO. 07590-22-25

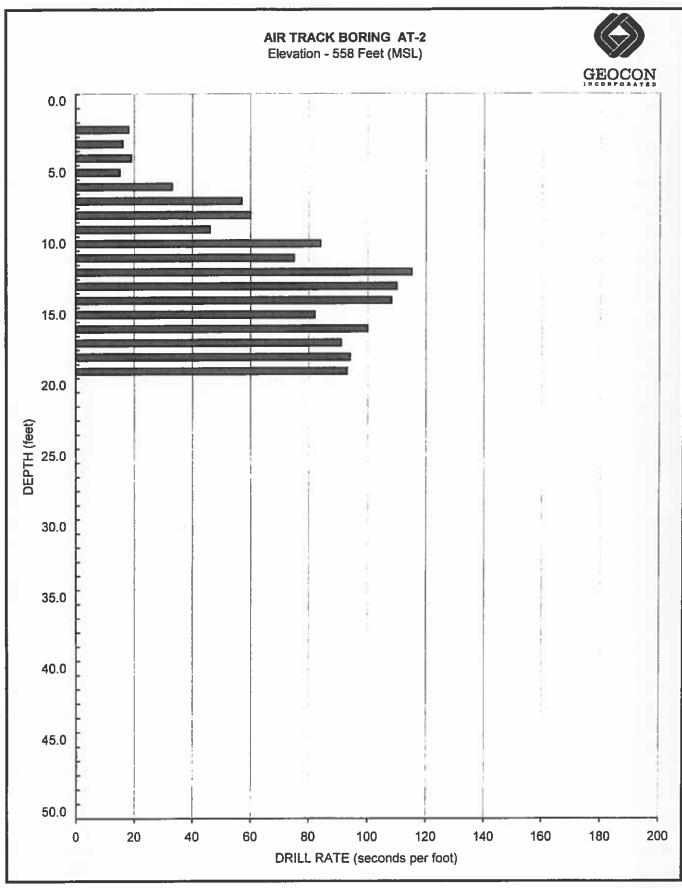
depth In Feet	SAMPLE NO.	ГІТНОГОВҮ	GROUNDWATER	Soil Class (USCS)	BORING B 5 ELEV. (MSL.) 468' DATE COMPLETED 11-20-2007 EQUIPMENT CME 75 BY: M. ERTWINE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
					MATERIAL DESCRIPTION			
0 –				SM	SANTIAGO FORMATION Very dense, moist, brown, Silty, fine grained SANDSTONE	_		
2 -	B5-1					83	112.0	12.5
4 -	B5-2			ML/SM	Very stiff to medium dense, moist, olive brown, interbedded Sandy SILTSTONE and Silty SANDSTONE	_ 26		
6 -	B5-3			SM	Very dense, moist, whitish gray, Silty, fine-to medium-grained SANDSTONE	80	110.6	13.7
_	B5-4			- ml	Hard, moist, gray mottled reddish brown, Sandy SILTSTONE; fining downward	48		
8 -						-		
10 -	B5-5				-Massive and homogeneous	95	102.6	20.8
12 -	B5-6					_ 43		
14 -						-		
16 -	B5-7			SC/ML	Hard, moist, dark gray mottled reddish brown, Sandy CLAYSTONE to Sandy SILTSTONE; trace rip-up clasts of fine-grained metavolcanic rock	- 72	108.1	23.9
- 18 -	B5-8				-Becomes siltstone	- 41 -		
	- 1			-	BORING TERMINATED AT 18.5 FEET			_
					No groundwater encountered Backfilled with cuttings			
igure og of	A-18, Boring	B 5	, P	age 1 d	of 1		07590	-22-25. GP.
	LE SYMBO		(_		MPLE (UNDIST	(URBED)	

DEPTH IN FEET	Sample NO.	ГІТНОГОСҮ	GROUNDWATER	SOIL CLASS (USCS)	BORING B 6 ELEV. (MSL.) 537' DATE COMPLETED 11-20-2007 EQUIPMENT CME 75 BY: M. ERTWINE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
-			Π		MATERIAL DESCRIPTION			
0 -		11	Π	SC	TOPSOIL Dark brown, Clayey SAND			
2 -	B6-1			SC/ML	SANTIAGO FORMATION Stiff, moist, brown mottled yellowish brown, Sandy CLAYSTONE interbedded with Sandy SILTSTONE	- 64 -	99.0	24.0
4 -	B6-2				-Becomes very dense, interbedded fine grained sandstone and hard sandy silt	_ 78		
6 -	B6-3			SM/ML	Very dense to hard, moist, yellowish brown mottled gray, interbedded Silty, fine grained SANDSTONE and Sandy SILTSTONE	<u>50/5</u> " -	99.9	17.4
-	B6-4				9-	_ 31		
8 -					-Becomes hard, predominately siltstone, excavates to sandy clay	-		
10 -	B6-5			- SM	Very dense, moist, gray mottled with reddish brown stringers, Silty, fine-to medium-grained SANDSTONE; fining upward	- 9 7 -	111.2	16.5
12 -	B6-6			SC/CL	Hard, moist, gray, Sandy CLAYSTONE to lean CLAYSTONE	- 48 _		
14 -						-		
- 16 -	B6-7			SC/SM	Very dense, gray mottled reddish brown, Silty to slightly Clayey, fine-to medium-grained SANDSTONE	- 68 -	109.0	16.1
- 18 -	B6-8			- SM -	Very dense, whitish gray, Silty, fine grained SANDSTONE	- 50		
					BORING TERMINATED AT 18.5 FEET No groundwater encountered Backfilled with cuttings			
iaure	e A-19,						07590)-22-25.GF
	f Borin	g B 🤅	5, F	Page 1	of 1			
	PLE SYME				LING UNSUCCESSFUL	MPLE (UNDIS	TURBED)	

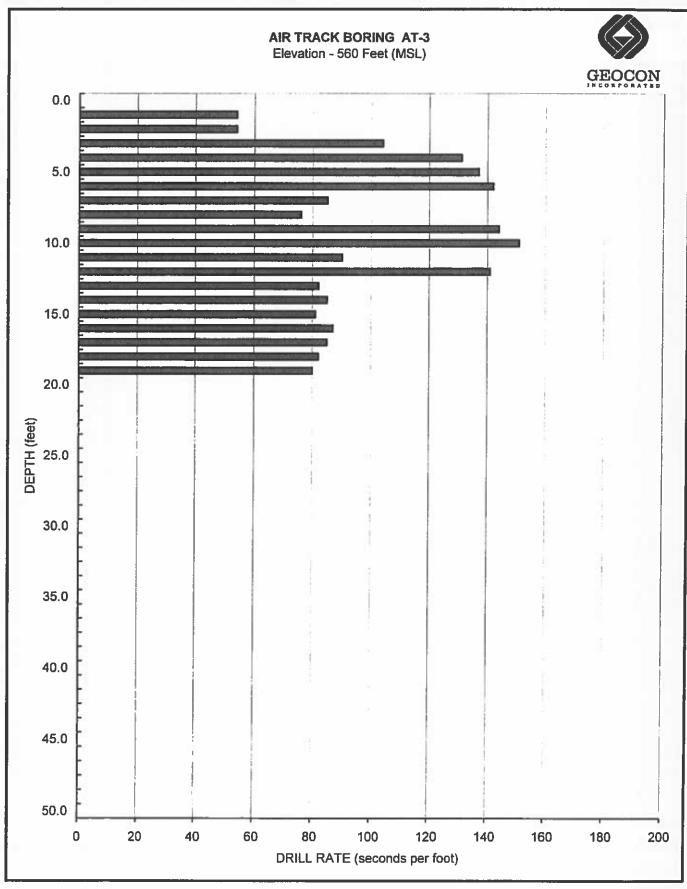
NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

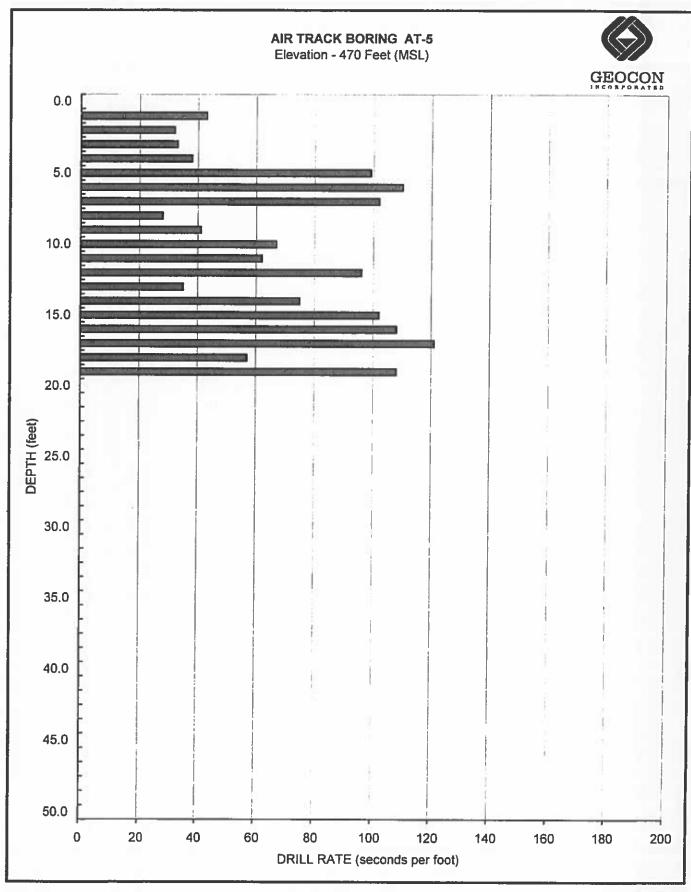

PROJECT NO. 07590-22-25A

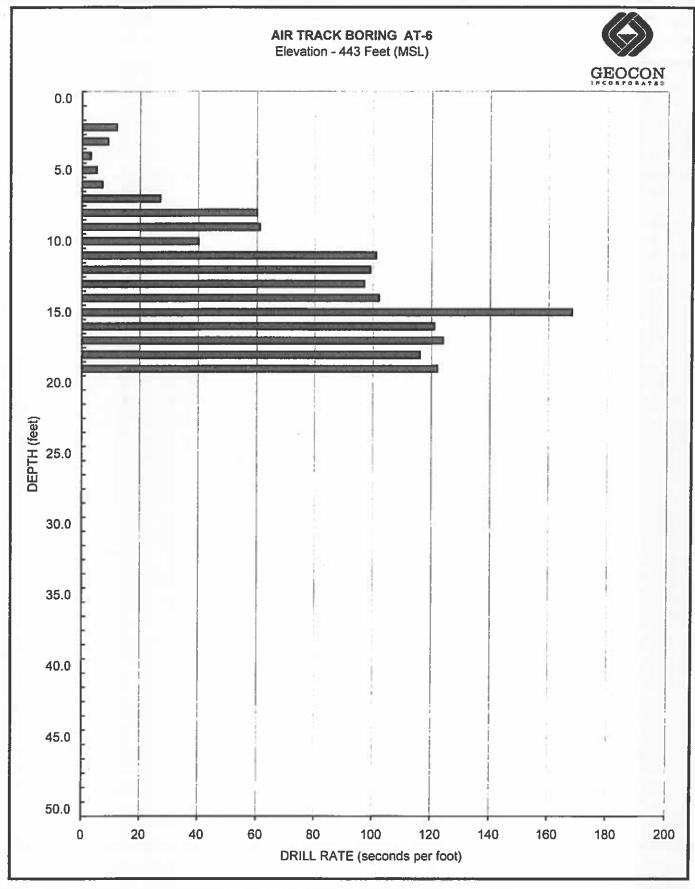
DEPTH IN FEET	SAMPLE NO.	ЛОНОВА	GROUNDWATER	SOIL CLASS (USCS)	BORING B 7 ELEV. (MSL.) 463' DATE COMPLETED 02-22-2010 EQUIPMENT UNIMOG-MARL 4 WITH 6" HSA BY: M. ERTWINE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
0 -					MATERIAL DESCRIPTION			
2	B7-0			CL	PREVIOUSLY PLACED FILL Stiff, moist, yellowish to olive brown, Sandy CLAY; trace organic rootlets, trace gravel	-		
-	B7-1					-		
4 - - 6 -	B7-2			SM-SC	SANTIAGO FORMATION Dense, moist, yellowish mottled reddish brown, Silty to Clayey, fine to coarse SANDSTONE; trace of angular gravels	36 	123.4	12.5
8 -	B7-3				-Becomes mottled grayish brown with trace black carbon staining	- 32 -		
-	B7-4			SM	Very dense, moist, yellowish brown to whitish gray, Silty, fine to medium-grained SANDSTONE; trace gravels	50/6" -	119.9	9.8
12 - - ¹ 14 -	B7-5				-Excavates to a silty sand	- _ 57 -		
16 -	B7-6 B7-7		-	- SM	Very dense, moist, yellowish brown, mottled grayish and reddish brown, Silty, fine-grained SANDSTONE, interbedded with very stiff, moist, grayish green, Clayey SILTSTONE; moderately cemented	- <u>-</u>		
18 - I	B7-8	······································		SM	ESCONDIDO CREEK GRANODIORITE (Kgr) Highly weathered, moderately strong, yellowish brown to reddish brown, fine-to-coarse grained, GRANITIC ROCK	50/6" 50/6"	113.1	14.2
					-Becomes moderately weathered, refusal REFUSAL AT 19.5 FEET Backfilled with cuttings and I bag of bentonite chips Groundwater was not encountered			
igure A	<u> </u>						07590-3	22-25A.GP

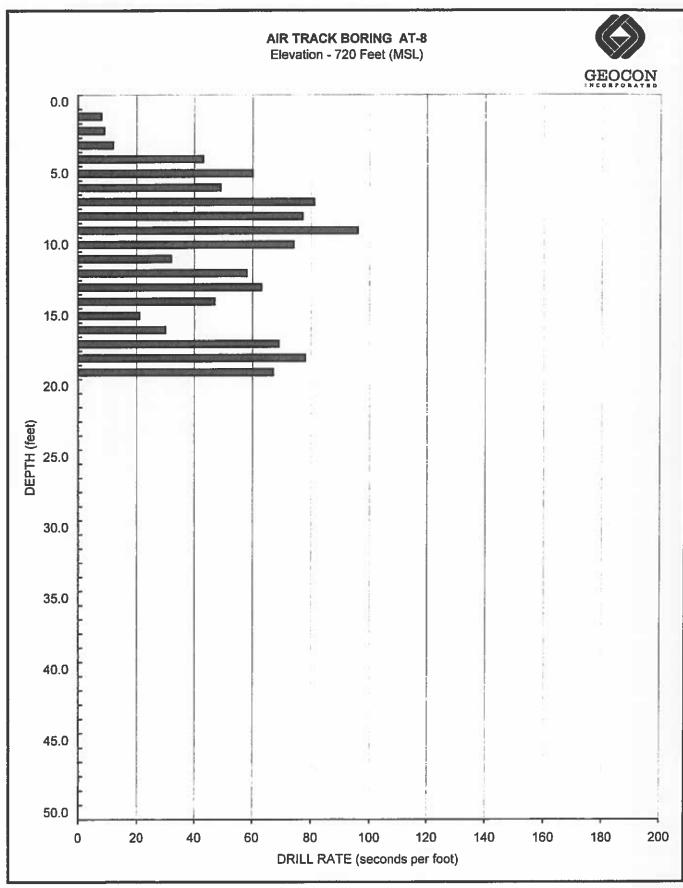

 SAMPLE SYMBOLS
 Image: Sampling unsuccessful image: Sample image: Sam

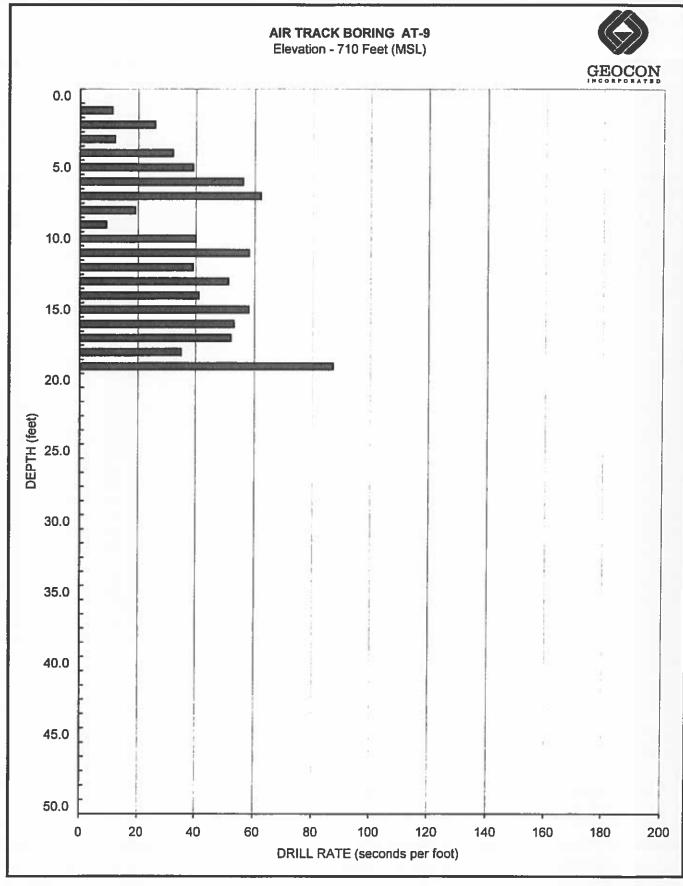
NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.


GEOCON

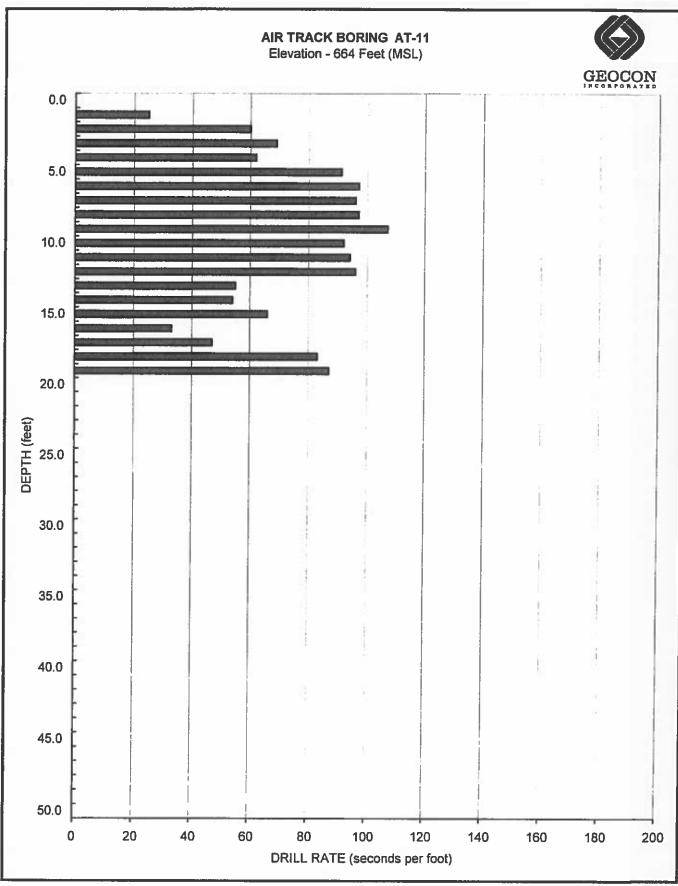

AT001.xls


AT002.xis

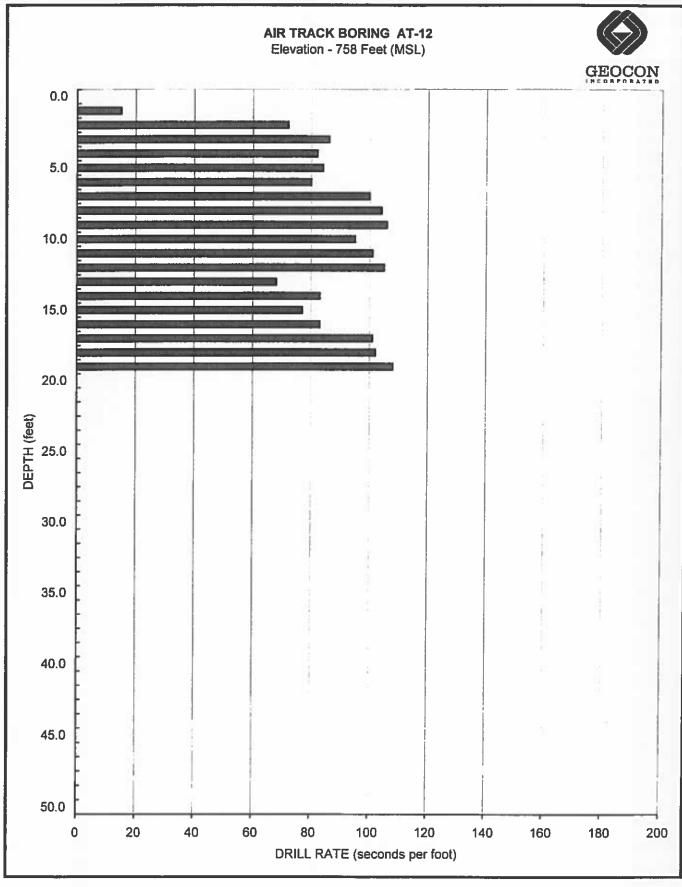

AT003.xls


AT005.xls

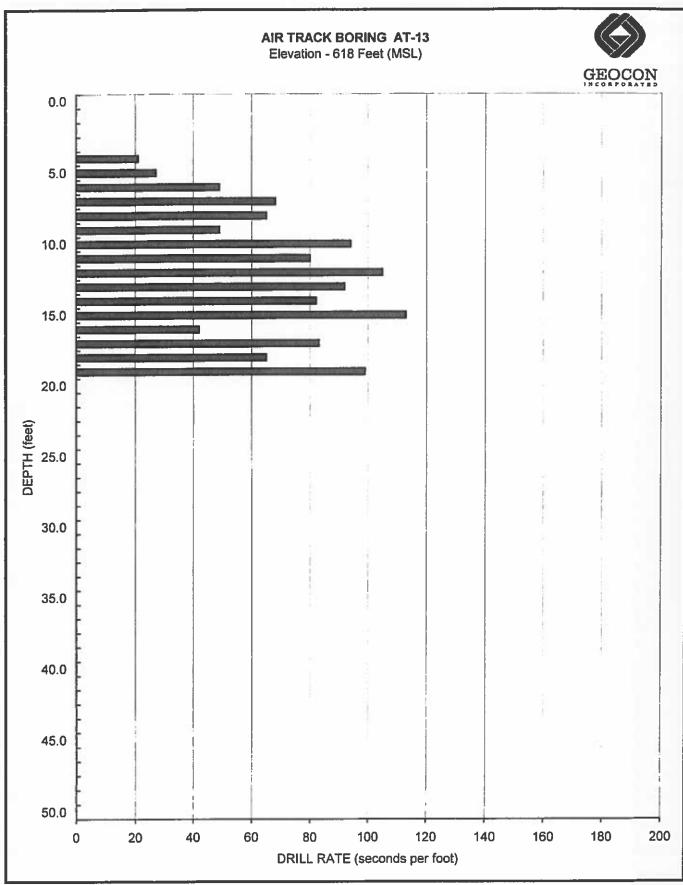
AT006 xis



AT008.xls



AT009.xls


FIGURE A-9

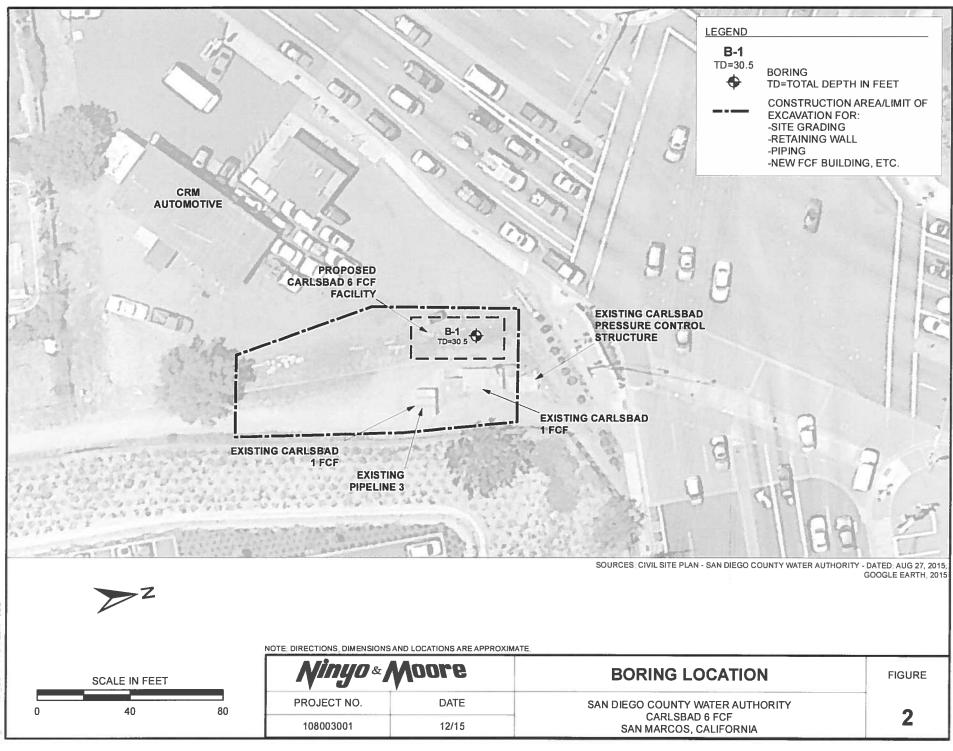
AT0011.xls

AT0012 xls

AT0013.xls

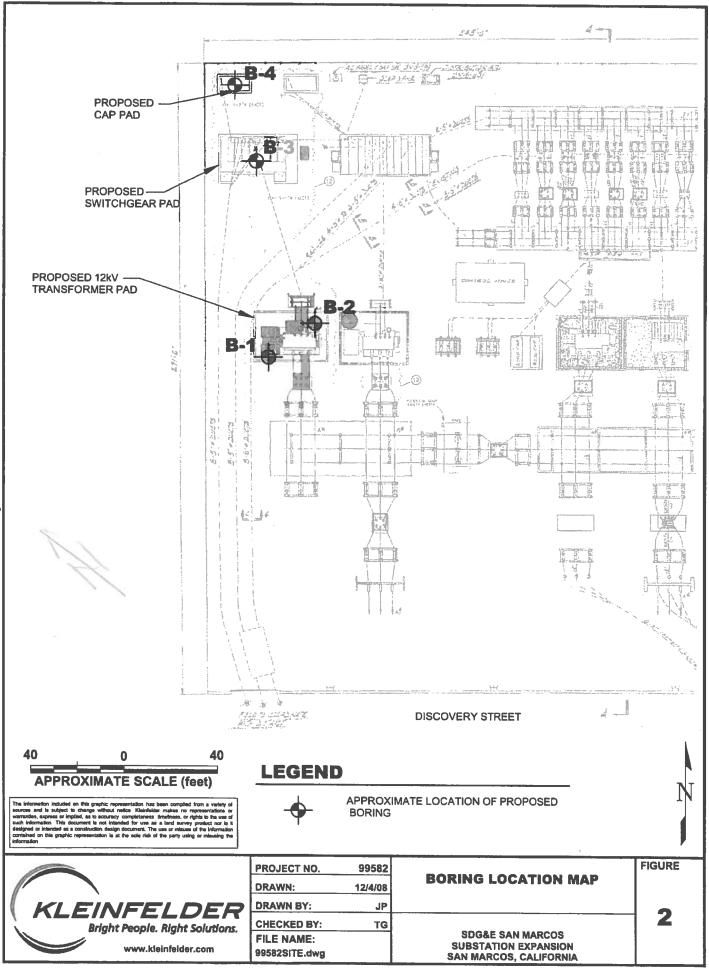
PROJECT NO. 07590-22-25

	NO. 075							
DEPTH	SAMPLE	гітногобу	GROUNDWATER	SOIL	BORING C 1	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
IN FEET	NO.	DH	NUND	CLASS (USCS)	ELEV. (MSL.) 722' DATE COMPLETED 11-20-2007	VETR.	Y DEI (P. C.I	OISTI NTEN
			GRO		EQUIPMENT CME 75 BY: A. SADR	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DR	₹S
- 0 -					MATERIAL DESCRIPTION			
				SM	TOPSOIL Loose to medium dense, damp, light brown, Silty SAND	-		
2 -						-		
· -		+ +		SC	RESIDUAL SOIL Dense, moist, brown, Clayey SAND; hollow stem to 3½ feet; caving started at 3½ feet	<u> </u>		
- 6 -	C1-1	- + - + + - + - + +			GRANITIC ROCK Moderately weathered, strong, light grayish brown, medium-grained GRANODIORITE; well defined fractures, with heavy staining 40 to 60	-		
8 -		- + + + + + + +			degrees -Run=3 feet, recovery=100%, RQD=25% -Becomes very fractured at various directions (e.g. near horizontal, vertical to 50 degrees)	-		
- 10 -		+ + + + + +			-7 to 12 feet, run=5 feet, recovery=95%, RQD=10%	-		
- 12 -		+ + + + + + + +			-12 to 13 feet, run=1 foot, recovery=90%, RQD=0%	-		
14 -		- + + - + + + +			-Relatively uniform granodiorite -13 to 15 fect, run=2 feet, recovery=100%, RQD=10%	-		
16 -		· + + · + + · + +			-Becomes highly fractured from 15 to 17 feet			
18 -		+ + - + + +			-Becomes moderately fractured from 17 to 19 feet -15 to 19 feet, run=4 feet, recovery=75%, RQD=0%			
Ī					BORING TERMINATED AT 19 FEET No groundwater encountered Backfilled with cuttings			
igure .oq of	A-20, Boring	C 1.		age 1 d	of 1		07590-	22-25.GPJ
	E SYMBO		C] SAMPLI		WPLE (UNDIST		


NOTE THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

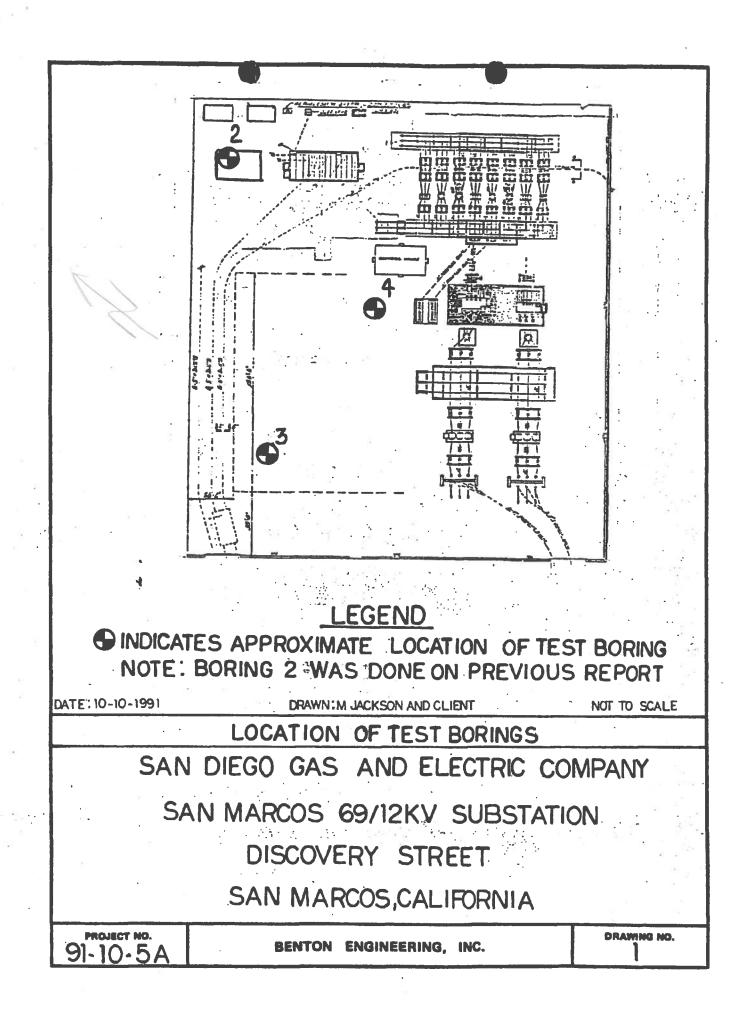
PROJECT NO. 07590-22-25

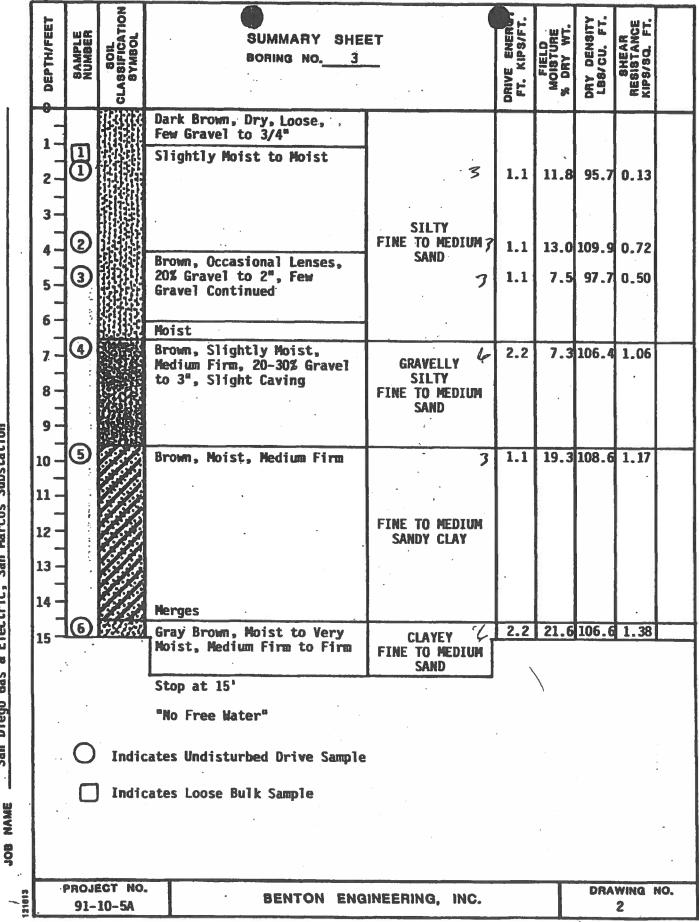
DEPTH IN FEET	SAMPLE NO	ПТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	BORING C 2 ELEV. (MSL.) 577' DATE COMPLETED 11-20-2007 EQUIPMENT CME 75 BY: M. ERTWINE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
					MATERIAL DESCRIPTION			
0 -				SC	TOPSOIL Loose, moist, reddish brown, Clayey SAND; residual soil	-		
2 -		+ + + + + +			GRANITIC ROCK Highly to completely weathered, weak, fine to medium grained, dark reddish brown, GRANITIC ROCK -No recovery, hollow stem augered to 5 feet	-		
4 -		+ + + + + +			Moderately weathered, moderately strong, moderately fractured, reddish	-		
6 -		• + • + + • + •			brown, fine-grained aphanitic GRANITIC ROCK; fractures typically 70 degrees to near horizontal			
8 -		· + · + + + +			-Intrusion from 7 to 9 feet, slightly weathered, strong, light yellowish brown, fine-grained	-		
10 - -		- + - + + - + -			-Becomes intensely fractured at 9.8 to 10 feet -Run=5 feet, recovery=40% RQD=0% Highly weathered, strong, moderately fractured, dark grayish brown,			
12 -	C2-1	+ + + + + +			fine-grained crystalline GRANITIC ROCK; fractures typically 70 degrees to near horizontal, intensely fractured from 10 to 10½ to 10.8 feet; infilled with clay	-		
14 -	C2-2	+ + + + + + + + + + + + + + + + + + + +			-Run=5 feet, recovery=56%, RQD=20% -Becomes highly fractured -No recovery from 15 to 19 feet	-		
16 -		+ + + + + +				-		
18 -		·+ +			-Hollow stem drilling to 5 feet, rock coring from 5 to 19 feet	-		
					BORING TERMINATED AT 19 FEET No groundwater encountered Backfilled with cuttings			
						20		
	A-21, Boring	C 2	, P	age 1	of 1		07590	-22-25 GPJ
SAMPL	E SYMBO	DLS		73	ING UNSUCCESSFUL STANDARD PENETRATION TEST DRIVE SA	MPLE (UNDIST	URBED)	


NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

106003001 BL mxd 12/9/2015

	ES							0/10/15		
	SAMPLES	⊢	(%	CF)		NO		8/18/15		
DEPTH (feet)	N N	BLOWS/FOOT	MOISTURE (%)	DRY DENSITY (PCF)	30L	CLASSIFICATION U.S.C.S.				T <u>1</u> OF <u>1</u>
HTH		/S/MC	STUI	ENSI	SYMBOL	J.S.C	METHOD OF DRILL	ING <u>8" Diameter Hollow</u>	Stem Auger (A-300) (In	gersoll)
ä	Bulk Driven	BLG	0 W	RYD		CLAS	DRIVE WEIGHT	140 lbs.	DROP	30"
							SAMPLED BY	LBLOGGED BY		ED BYGTF
0						SM	FILL:	DESCRIPTION/	NTERPRETATION	
			<u> </u>			CL	Dark brown, moist, m	nedium dense, silty SA	ND; few clay.	v to little silt; trace gravel;
						 	scattered organic deb	ris. t, loose, silty SAND.	•	
-						5171	medium brown, mois	i, loose, silly SAND.		
		21	17.6	104.5						
						CL	Olive brown, moist, v	very stiff, sandy CLAY		
-						SM	Medium brown, mois	t, medium dense, silty	SAND; trace to few	clay.
10-							SANTIAGO FORMA	TION		
10		50/6"	13.3	110.6			Yellowish to grayish	brown, moist, weakly	to moderately cemer	nted clayey SILTSTONE.
-		DCIAN					SANDSTONE.	moist, weakly to mode	erately cemented, fin	to medium clayey
_		86/4"								
		50/	14.0	113.4			Light grow to vallow:	- h		
-		5-1/2"	14.0	113.4			Light gray to yellowi	sn brown.		
20		50/6"					Yellowish brown: mc	derately cemented; ma	edium to coarse	
							· · · · · · · · · · · · · · · · · · ·	,		
-			Ŧ							
-										
		50/6"					Light gray to olive; w	et.		
-										
30 -							Total Depth = 30.5 fe	et.		
-							Groundwater encount	ered at approximately	22 feet during drilling	ng. t shortly after drilling on
							8/18/15.	Annatery 10.0 Cubic IC	set of bencomite grou	source after ariting on
-							Note: Groundwater. t	hough not encountered	l at the time of drilli	ng, may rise to a higher
-							level due to seasonal	variations in precipitat	ion and several othe	r factors as discussed in
							the report.			
-							The ground elevation	shown above is an est	imation only. It is ba	ased on our interpretations ses of this evaluation. It is
40							not sufficiently accur	ate for preparing const	ruction bids and des	ign documents.
					P	440		SAN F	BORING LOO	
			Ι		SZ	'IN	ore		DATE	
L		V				V		108003001	12/15	A-1




CAD FILE: G:\2008\99582 - SDGE San Marcos\ LAYOUT: LayoutI

ATTACHED IMAGES: Images: San_Marcos_site.jpg ATTACHED XREFS:

	DRIL DRIL	LING LING	LED: COMP/ METHO	DD:	P/ UI Ho	/21/08 ACIFIC DRILLING NIMOG, Auto Hammer, 1 Dilow Stem Auger (HSA) inches	40lb, 30'' drop,	WATER DEPTH: DATE OBSERVED: GROUND ELEVATION: LOGGED BY: REVIEWED BY:		8	
ELEVATION (feet)	DEPTH (feet)	BULK SAMPLES DRIVEN	BLOW COUNTS (blows/foot)	SAMPLE NUMBER	GRAPHIC LOG		SOIL DESCRIPT AND CLASSIFICAT		DRY UNIT WEIGHT	MOISTURE CONTENT (%)	COMMENTS/ ADDITIONAL TESTS
Å			25 34 5	J 2 3 4 5		gravel Increase in coarse gra <u>Alluvium (Qal):</u>	rown, dry to moist, m , fine to coarse grain ained sand and fine g own, moist, very soft m to high plasticity	ed sand, some fine grained rained gravel to soft, trace fine grained	23.0	6	SA (20%) WA (78%) PI 29 LL 47 CONSOL
		KL	EIN		LDE Light Solut		SUBS	G&E SAN MARCOS ITATION EXPANSION IARCOS, CALIFORNIA	 		GURE
PI	ROJI	ECT	NO.	995	582		LOG	OF BORING B-1			

$\left[\right]$	DRILI DRILI	ling Ling	LLED: COMP METH	OD:	: P/ UI Ho	/21/08 ACIFIC DRILLING NIMOG, Auto Hammer, 14 Dilow Stem Auger (HSA) inches	40lb, 30'' drop,	WATER DEPTH: DATE OBSERVED: GROUND ELEVATION: LOGGED BY: REVIEWED BY:	NONE 11/21/0 TBD TG SHR	8	
ELEVATION (feet)	DEPTH (feet)	BULK SAMPLES	BLOW COUNTS (blows/foot)	SAMPLE NUMBER	GRAPHIC LOG		SOIL DESCRIP AND CLASSIFICAT	ΓΙΟΝ	DRY UNIT WEIGHT	MOISTURE CONTENT (%)	COMMENTS/ ADDITIONAL TESTS
			30 27 5	1 2 3A 3B		Becomes dark brown Becomes medium der <u>Alluvium (Qal):</u>	th some Gravel, bro to coarse grained sat nse, gray brown wwn, moist, very sof plasticity	wn, dry to moist, medium nd, fine grained gravel	125.0	6	DS PI 29 LL 45
P	15 20 		LEIA Bright	People.	LOF Right Solu 582	-Boring backfilled wi	th soil cuttings and SD SUB: SAN M	Bentonite G&E SAN MARCOS STATION EXPANSION MARCOS, CALIFORNIA G OF BORING B-2			GURE A4

San Diego Gas & Electric, San Marcos Substation

APPENDIX D

CURRENT PROJECT PLANS AND AS-GRADED GEOLOGIC MAPS OF PREVIOUSLY GRADED PADS

FOR

TL6975 – SAN MARCOS – ENCONDIDO BRADY PROJECT: SDGEC1.078.000 SAN DIEGO COUNTY, CALIFORNIA

PROJECT NO. G1818-52-24

GENERAL NOTES

1.	LOCATIONS OF ALL UNDERGROUND FACILITIES ARE TAKEN FROM AVAILABLE MAPS
	AND RECORDS. ACTUAL FIELD LOCATIONS OF ALL UTILITIES MUST BE VERIFIED BY
	CONTRACTOR PRIOR TO TRENCHING. CONTACT USA DIG ALERT, 1-800-227-2600,
	PRIOR TO DIGGING. UNDERGROUND FACILITY ELEVATIONS & LOCATIONS SHOWN ON
	THE DRAWINGS ARE BASED ON THE BEST AVAILABLE INFORMATION LOCATED
	DURING DESIGN. NOTE THAT THE DEPTH OF UNDERGROUND UTILITIES SHOWN ARE
	APPROXIMATE. THE CONTRACTOR SHALL BE RESPONSIBLE FOR LOCATING ALL
	EXISTING UNDERGROUND FACILITIES PRIOR TO CONSTRUCTION. CONTRACTOR SHALL
	BE RESPONSIBLE FOR ANY DAMAGE TO SURFACE OR UNDERGROUND FACILITIES
	RESULTING FROM THEIR WORK WHETHER SHOWN OR NOT SHOWN ON THE
	DRAWINGS.

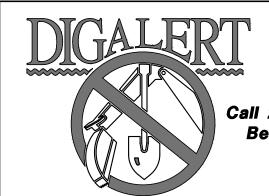
- 2. ALL WORK SHALL COMPLY WITH THESE ENGINEERING DRAWINGS, SPECIFICATION NO. TE-0100 & TE-0107, CONTRACT DOCUMENTS AND ALL APPLICABLE PROVISIONS OF THE SDG&E UNDERGROUND STANDARDS, LATEST REVISION.
- 3. ALL WORK SHALL CONFORM TO THE REQUIREMENTS OF G.O. 128.
- 4. ALL WORK SHALL COMPLY WITH ALL STATE AND LOCAL TRAFFIC CONTROL REGULATIONS. CONTRACTOR SHALL FOLLOW ALL PROVISIONS OF PERMITS, WHETHER FROM CITY, COUNTY, STATE, OR OTHER DISTRICTS OR AGENCIES.
- 5. ANY DEVIATION FROM ENGINEERING DRAWINGS MUST BE APPROVED BY SDG&E PRIOR TO CONSTRUCTION. MAINTAIN AND UPDATE THE AS-BUILT RECORDS TO DOCUMENT ALL FIELD CHANGES.
- PROFILE SECTIONS ON THE PLAN AND PROFILE DRAWINGS ARE ALONG CENTER LINE OF TRENCH.
- PROVIDE NECESSARY ANCHORING TO PREVENT CONDUITS FROM FLOATING WHILE 7. THEY ARE BEING ENCASED IN CONCRETE.
- USE ONLY PLASTIC STRAPS TO SECURE CONDUITS UNLESS OTHERWISE APPROVED. NO FERROUS METAL SHALL ENCIRCLE ANY INDIVIDUAL DUCT OR GROUP OF DUCTS.
- CLEARANCE BETWEEN EXISTING UTILITIES AND DUCT BANKS SHALL BE A MINIMUM OF 1' UNLESS OTHERWISE NOTED.
- 10. CONTRACTOR TO MAINTAIN ACCESS TO ALL DRIVEWAYS DURING CONSTRUCTION.
- 11. CONTRACTOR TO REPAIR AND REPLACE PAVEMENT STRIPING TO PRIOR CONDITIONS.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR RESTORATION OF ALL GROUND SURFACES DISTURBED DURING CONSTRUCTION. REPLACEMENT OF LANDSCAPING & IRRIGATION SHALL BE COMPARABLE TO THAT REMOVED AND BE FINISHED WITHIN 30 DAYS OF COMPLETION OF CONSTRUCTION.
- 13. IN MAKING OPEN CUT ROAD CROSSINGS, THE CONTRACTOR SHALL NOT BLOCK MORE THAN ONE HALF OF THE ROAD AT A TIME. ONE LANE OF TRAFFIC IN EACH DIRECTION MUST BE MAINTAINED AT ALL TIMES.
- 14. THE MINIMUM RADIUS OF CONDUITS SHALL BE 25 FEET FOR HORIZONTAL BENDS, EXCEPT AS NOTED ON DRAWINGS, OR APPROVED BY ENGINEER.
- 15. SOME EXISTING TRAFFIC LOOP DETECTORS WILL BE DAMAGED DURING CONSTRUCTION AND MUST BE REPLACED BY CONTRACTOR.
- 16. CONTRACTOR TO FIELD FIT ALL 3313 HANDHOLDS AT EVERY 69KV VAULT LOCATION.
- 17. THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING A PERMIT FOR TEMPORARY CONSTRUCTION DEWATERING. A PERMIT IS REQUIRED FROM THE REGIONAL WATER QUALITY CONTROL BOARD (RWQCB) FOR ANY DISCHARGE OF GROUNDWATER TO THE ENVIRONMENT. THE CONTRACTOR SHALL COMPLY WITH (RWQCB) WASTE DISCHARGE PERMIT REQUIREMENTS BEFORE DEWATERING. THÈ CONTRACTOR SHALL OBTAIN AUTHORIZATION AS REQUIRED FOR GROUNDWATER DISPOSAL. THE CONTRACTOR SHALL COMPLY WITH ALL SAMPLING, TESTING, MONITORING, AND REPORTING REQUIREMENTS.
- 18. AT ALL LOCATIONS WHERE PROPOSED TRENCH IS BELOW AN EXISTING VCP SEWER LINE, CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING TEMPORARY SUPPORT AS NECESSARY, OR REPLACE IN KIND IF DAMAGED

BASIS OF BEARINGS:

BEARINGS ARE REFERENCED TO GRID NORTH AS DEFINED BY THE CALIFORNIA COORDINATE SYSTEM 1983, ZONE VI AND ARE BASED ON OBSERVATIONS BETWEEN NGS POINTS PID AD9374 (CRQ AP STA A) AND POINT PID DX3916 (LOMAX) SAID BEARING BEING S 80°16'45" E.

BASIS OF ELEVATION:

ELEVATIONS ARE BASED ON NGS PID AD9374 (CRQ AP STA A). ELEVATION 33.37 NAVD88 (GEOID09)

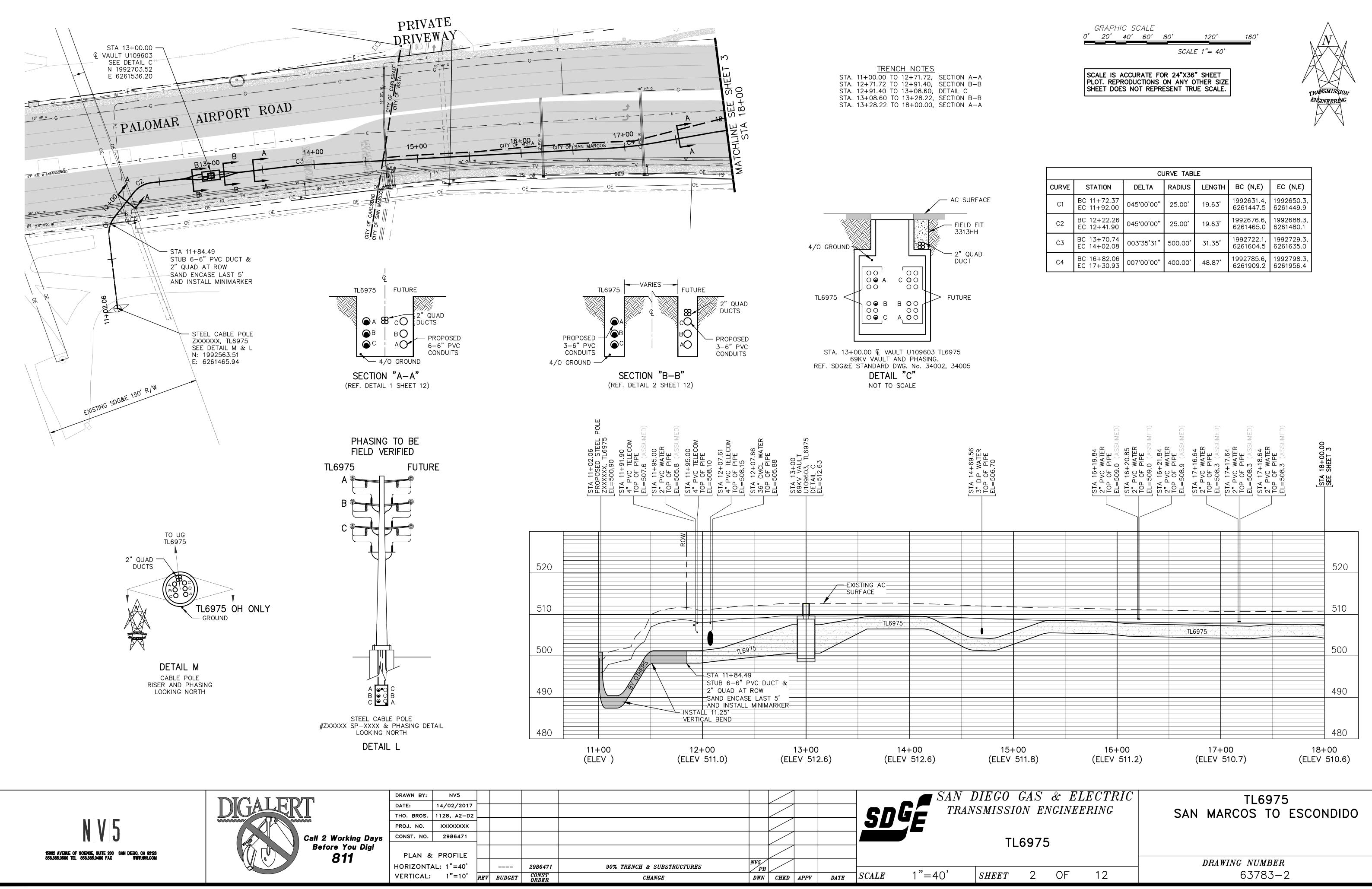

BENCH MARK:

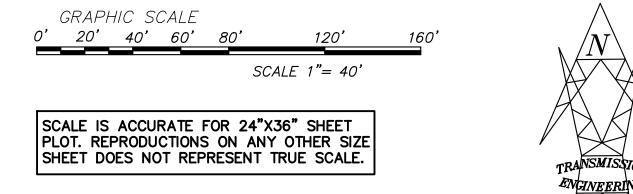
POINT IS A TOPOGRAPHIC STATION DISK LOCATED NEAR THE WEST END OF THE MCCLENNAM-PALOMAR AIRPORT ON A SLIGHT HILL NORHT OF RUNWAY 6 IN CARLSBAD, CALIFORNIA. NAVD88 ELEVATION=333.365SFT.

BASIS OF COORDINATES: THE BASIS OF HORIZONTAL COORDINATES FOR THIS SURVEY IS THE NORTH

AMERICAN DATUM OF 1983, CCS ZONE 6 (EPOCH 2007.00) UTILIZING GROUND RELATIONSHIPS, HOLDING NGS POINT PID AD9374 PER TOWILL CONTROL. THE VALUE FOR PID AD9374=(N-1991682.719, E-6243858.440)

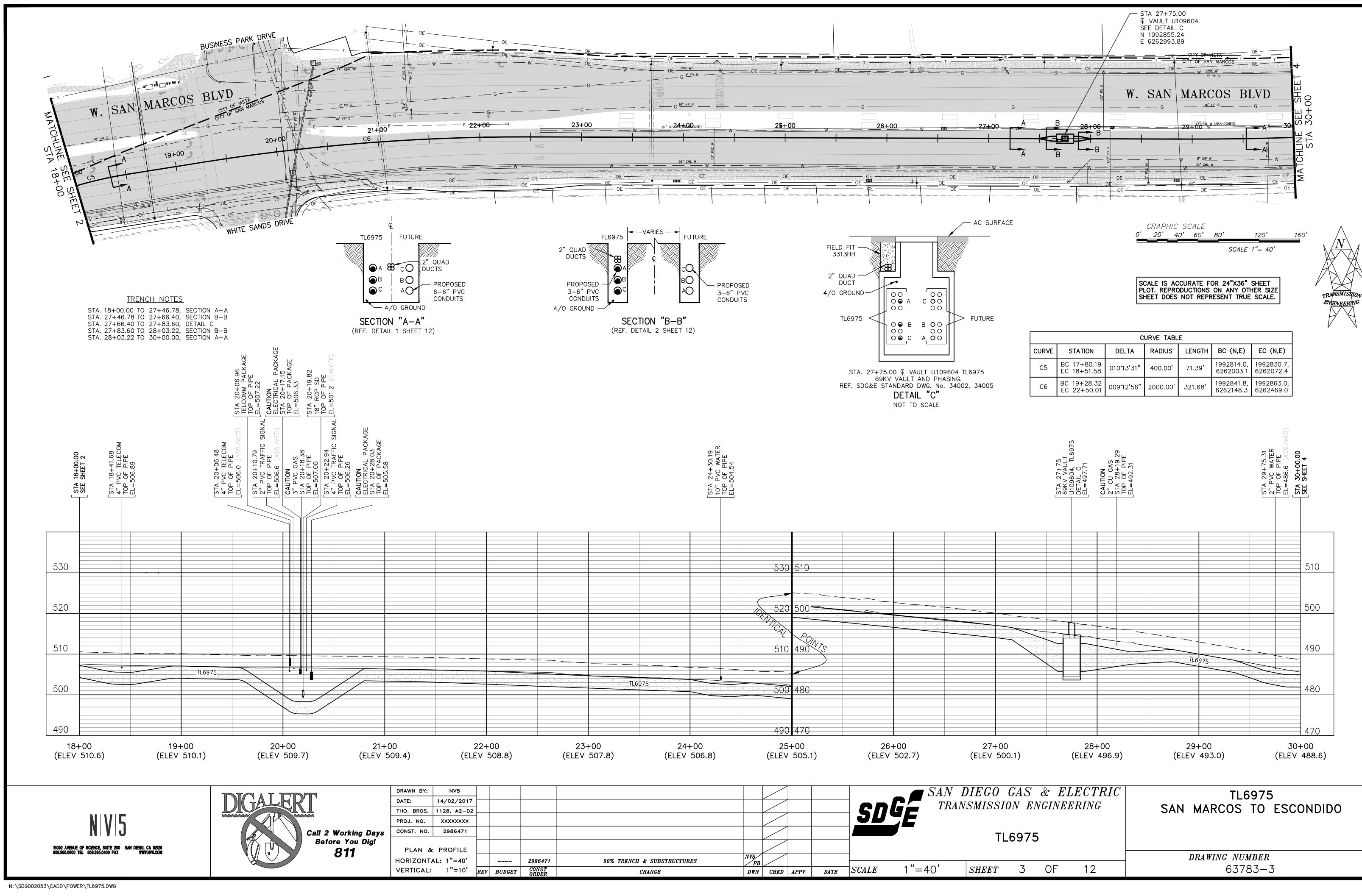
SHEET INDEX


2–11	TL6975 PLAN & PROFILE
12	DETAILS & NOTES
##-##	HORIZONTAL DIRECTIONAL
	DRILL PLANS

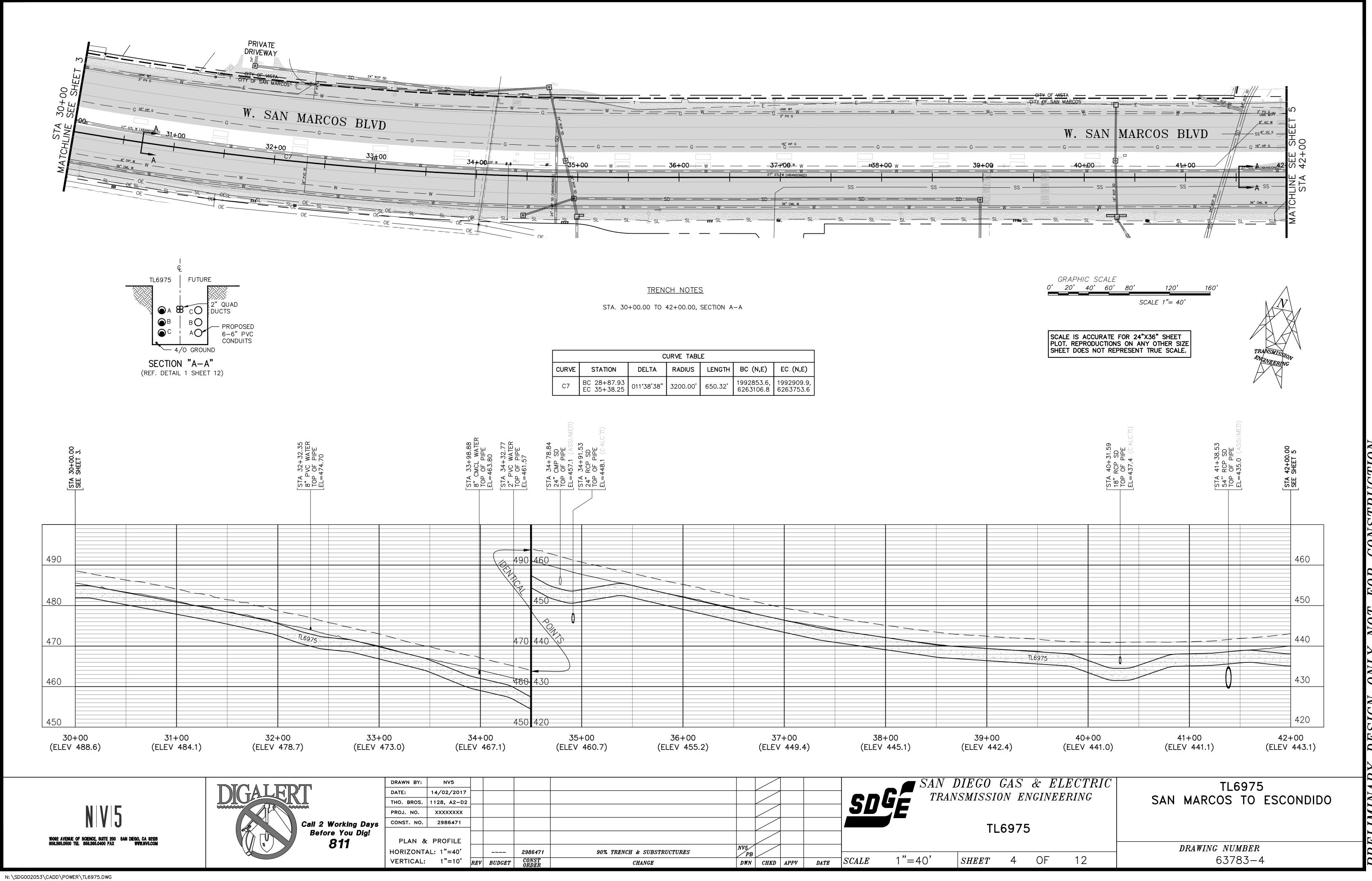


	ASPHALT CONCRETE
; ;P	ASBESTOS CEMENT PIPE
×1	BEGIN CURVE
, 	COPPER
, p	CURED IN PLACE PIPE
 २	CIRCUIT
	CEMENT COATED MORTAR
IVILO	LINED STEEL PIPE
ITR	CENTER
1L	CEMENT MORTAR LINING
	CEMENT MORTAR LINED
	& COATED STEEL
NC	CONCRETE
4	DIAMETER
/G	DRAWING
	END CURVE
	ELEVATION
EC	ELECTRICAL
	EDGE OF PAVEMENT
ł	HAND HOLE
	OVERHEAD
ł	MORRO HILL
;	POINT OF CURVE
ΗP	POLYETHYLENE HIGH
	PRESSURE GAS
	PORTLAND CEMENT CONC
	PROPERTY LINE
	POLYVINYL CHLORIDE
	REFERENCE
W	RIGHT OF WAY
Q	REQUIRED
N .	SAN LUIS REY STORM DRAIN
1	STREET LIGHT
A	STATION
	SEWER
/R :P	VITRIFIED CLAY PIPE

Se w Vitr	ER RIFIED CLAY P	PIPE				— — — — — EXIST EASEMENT				ELEVATIONS ELEVATIONS	OR MANHOLE INV	/ERT		
	DRAWN BY:	NV5											AN D) <i>I</i> F
	DATE:	14/02/2017											TRAN	CM
	THO. BROS.	1128, A2-D2									SDU			5 <i>IV</i> I
	PROJ. NO.	xxxxxxxx									J			
ays	CONST. NO.	2986471) —		
!							NV5	\square			-			
	HORIZONT	•			2986471	90% TRENCH & SUBSTRUCTURES	РВ	\angle			GGLIR			au
	VERTICAL:	N/A	REV	BUDGET	CONST ORDER	CHANGE	DWN	CHKD	APPV	DATE	SCALE	N/A		SH

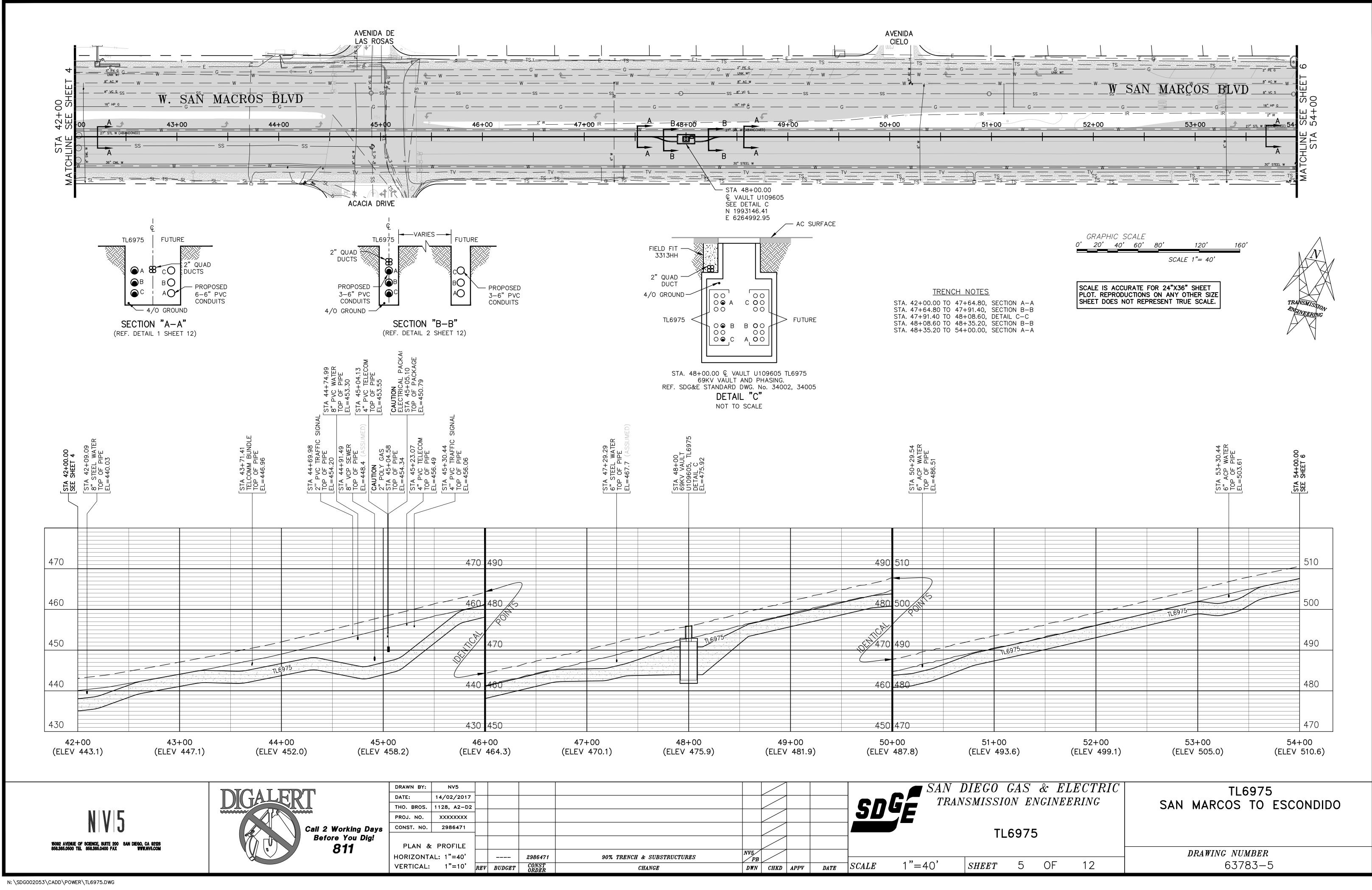

N:\SDG002053\CADD\POWER\TL6975.DWG

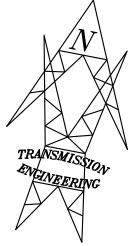
	CURVE TABLE												
CURVE	STATION	DELTA	RADIUS	LENGTH	BC (N,E)	EC (N,E)							
C1	BC 11+72.37 EC 11+92.00	045°00'00"	25.00'	19.63'	1992631.4, 6261447.5	1992650.3, 6261449.9							
C2	BC 12+22.26 EC 12+41.90	045°00'00"	25.00'	19.63'	1992676.6, 6261465.0	1992688.3, 6261480.1							
С3	BC 13+70.74 EC 14+02.08	003•35'31"	500.00'	31.35'	1992722.1, 6261604.5	1992729.3, 6261635.0							
C4	BC 16+82.06 EC 17+30.93	007°00'00"	400.00'	48.87'	1992785.6, 6261909.2	1992798.3, 6261956.4							


 \sim CONSTRUCTIC FORN0T0NLYDESIGN RELIMINARY

	_)]
17											TRAN	C
D2						\angle			СПІ		IIVAIV	D .
<									SD			
			2986471	90% TRENCH & SUBSTRUCTURES	NV5 PB					. 33		
)	REV	BUDGET	CONST ORDER	CHANGE	DWN	CHKD	APPV	DATE	SCALE	1"=4	10'	S

CURVE TABLE										
CURVE	STATION	DELTA	RADIUS	LENGTH	BC (N,E)	EC (N,E)				
C5	BC 17+80.19 EC 18+51.58	010 ° 13'31"	400.00'	71.39'	1992814.0, 6262003.1	1992830.7, 6262072.4				
C6	BC 19+28.32 EC 22+50.01	009 ° 12'56"	2000.00'	321.68'	1992841.8, 6262148.3	1992863.0, 6262469.0				


CONSTRUCTIC FORN010NLYDESIGN PRELIMINARY

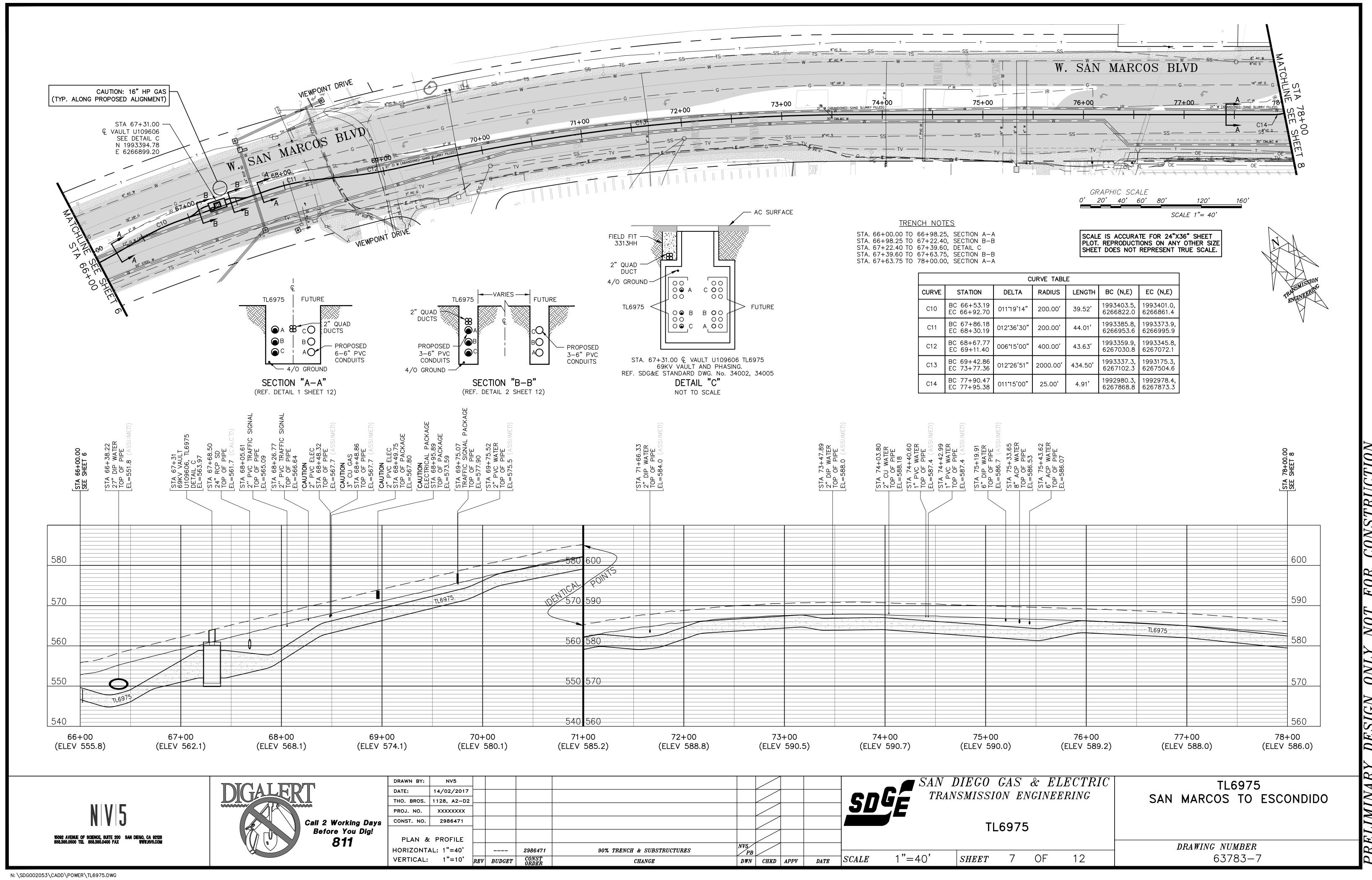

	CURVE TABLE								
CURVE	STATION	DELTA	RADIUS	LENGTH	BC (N,E)	EC (N,E)			
C7	BC 28+87.93 EC 35+38.25	011°38'38"	3200.00'	650.32'	1992853.6, 6263106.8	1992909.9, 6263753.6			

	_									_ SAN	
17											RANS
D2									- 577		
<									JU		
										y —	
			2986471	90% TRENCH & SUBSTRUCTURES	NV5 PB				<u> </u>		
)	REV	BUDGET	CONST ORDER	CHANGE	DWN	CHKD	APPV	DATE	SCALE	1"=40'	S


CONSTRUCTIC FORN010NLYDESIGN PRELIMINARY

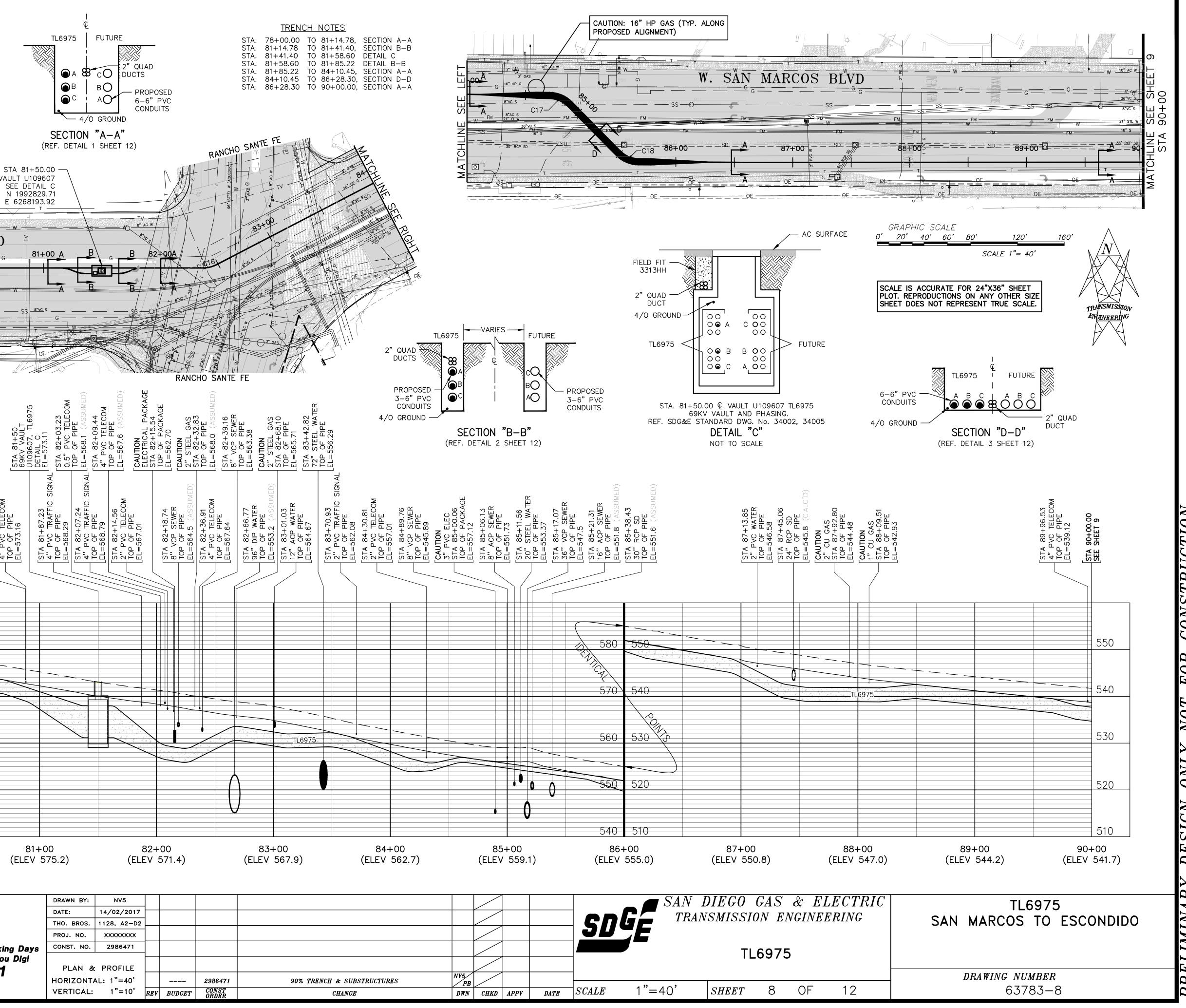
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E SEE SHEET 6 A 54+00
$ \underbrace{ \begin{array}{c} \hline \\ \hline $	MATCHLIN

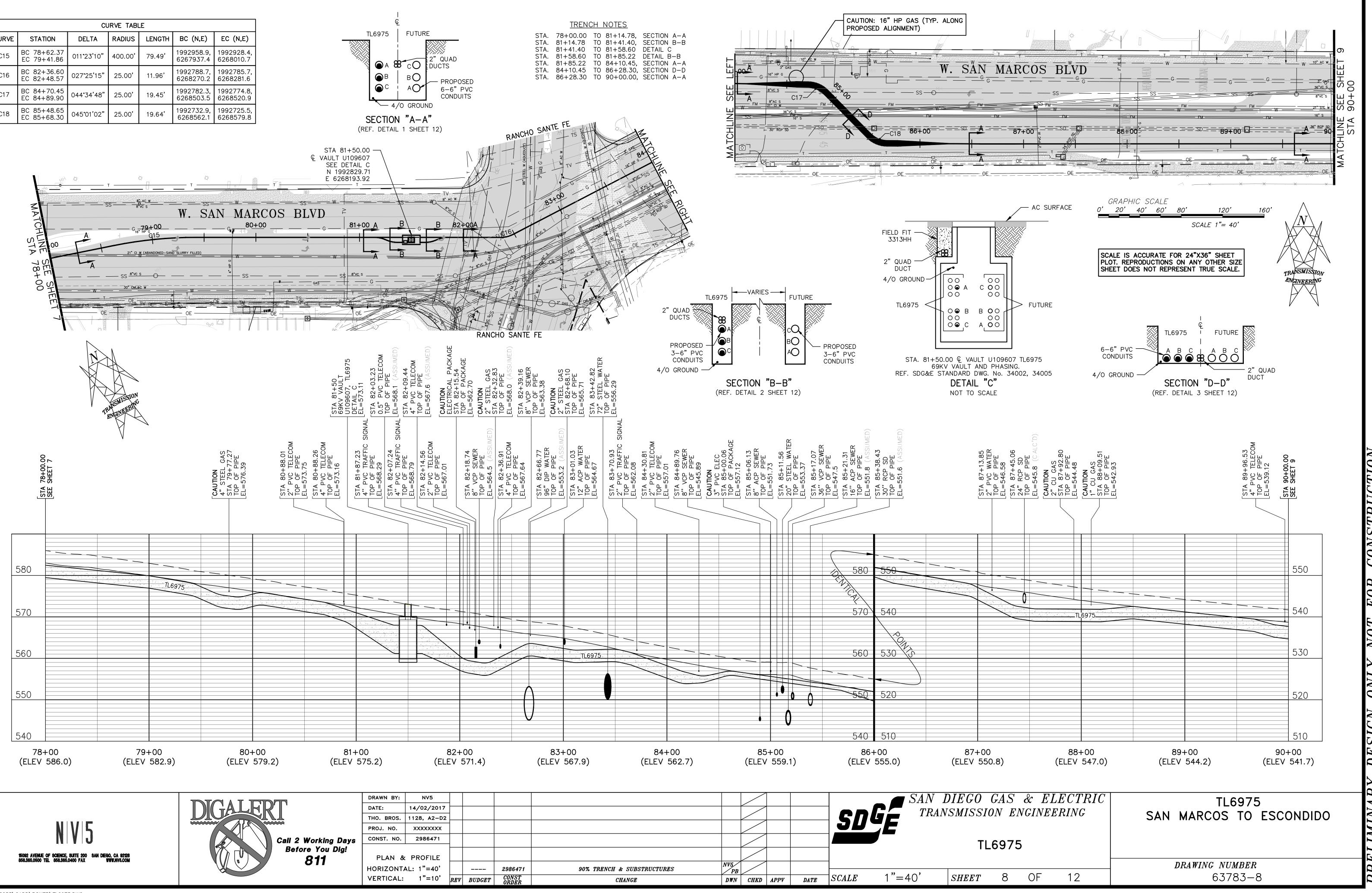
CONSTRUCTIC FORNOT0NLYDESIGN RELIMINARY


CURVE TABLE								
CURVE	STATION	TION DELTA R		LENGTH	BC (N,E)	EC (N,E)		
C8	BC 60+20.11 EC 65+34.68	014°44'28"	2000.00'	514.57 '	1993375.1, 6266191.4	1993405.8, 6266703.7		
С9	BC 65+75.40 EC 66+16.60	005 ° 54'04"	400.00'	41.20'	1993403.0, 6266744.3	1993402.3, 6266785.5		

	<u>Tf</u>	REN	ICH NO	<u>TES</u>	
STA.	54+00	то	66+00,	SECTION	A-A

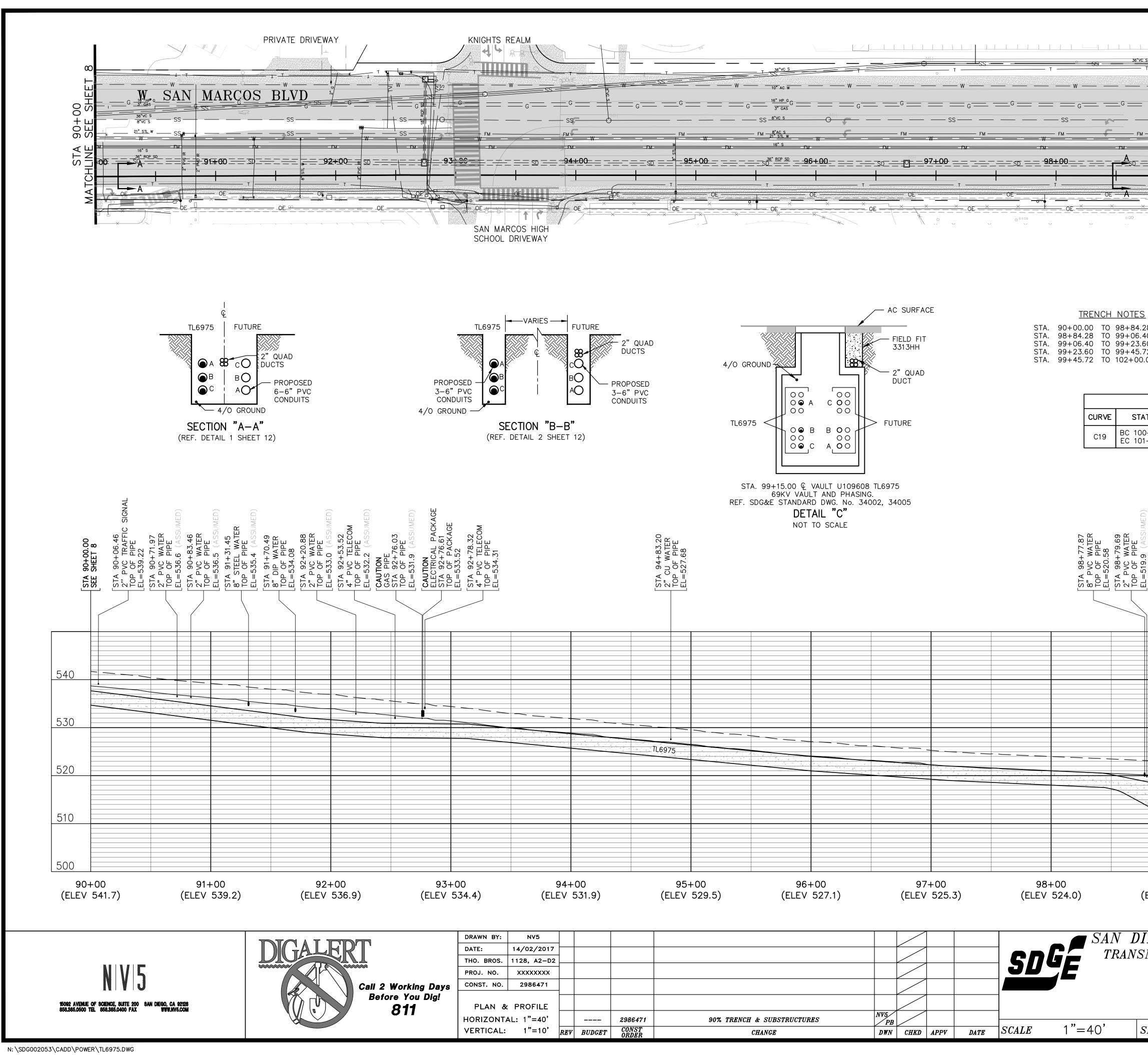
					5.30	560			
						000			
						/			
		T				/			
	A			and the second					
1		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Ad 4		520	550 /			
- A									
	, 4 , 3d , 4								
						-/ x			
						/			
						/			
					510	540			
					510/	540			
					\sim				
								~ ~ ~	
					5				
								1 1 4 7 4	
						-530		4	
						000			
							The second se		
					100	E20			
					490	520			
58100	50		60		61		60		
58+00	59-	+00	00-	+00	011	+00	62-	FUU	
(ELEV 523.5)	(FI FV	525.4)	(FI FV	527.5)	(FLFV	530.8)	(ELEV	5342	(El
		020.17		027.07		000.07		001.27	


)IE
017									SN		TRANS	SM
-D2									5/(
xx												
71												
.E												
0'			2986471	90% TRENCH & SUBSTRUCTURES	NV5 PB						,	
0'	REV	BUDGET	CONST ORDER	CHANGE	DWN	CHKD	APPV	DATE	SCALE	1"=40'		SH

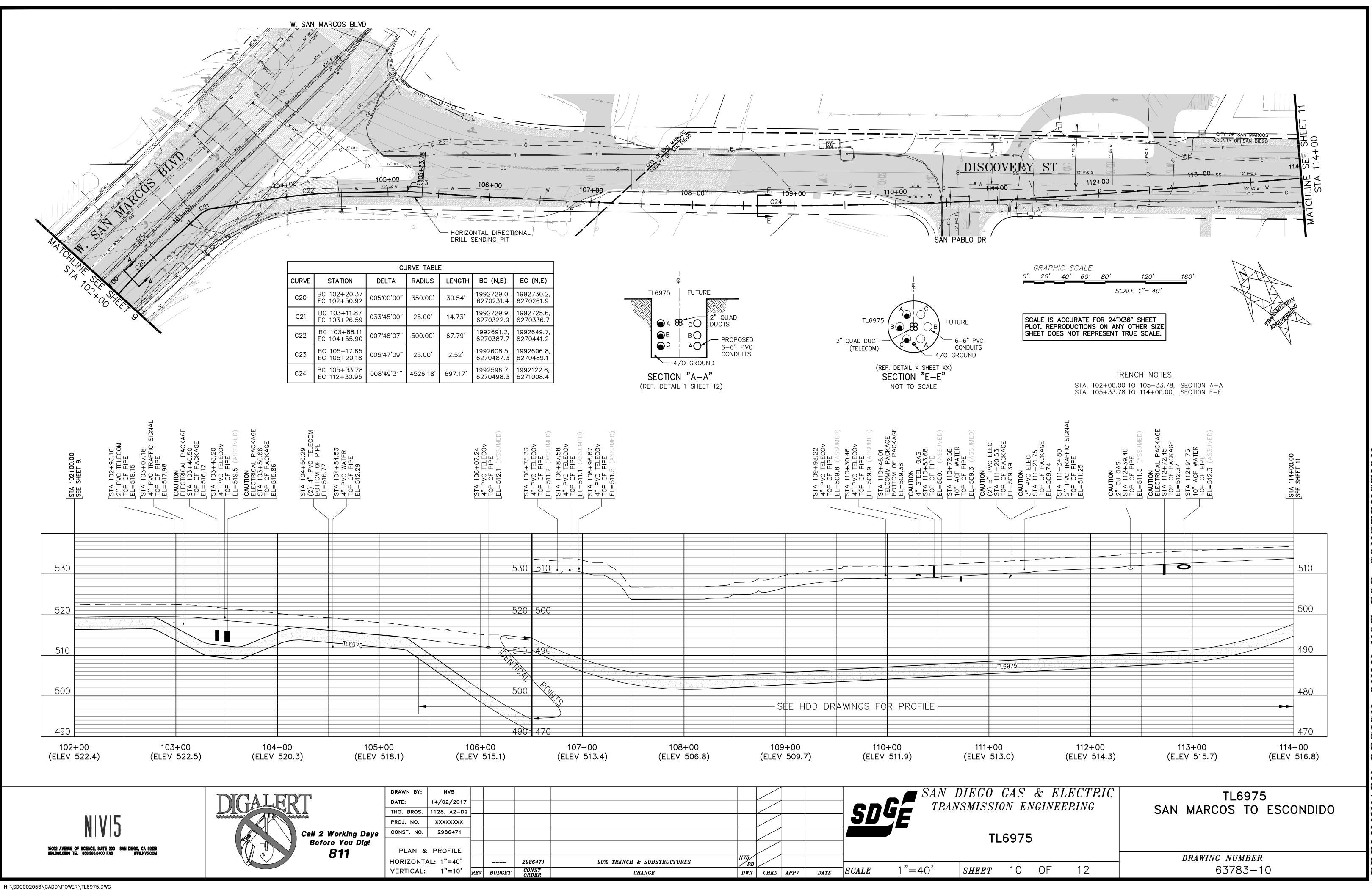

FORN0T0NLYDESIGN PRELIMINARY

TIOCONSTRUC FORN010NLYDESIGN PRELIMINARY

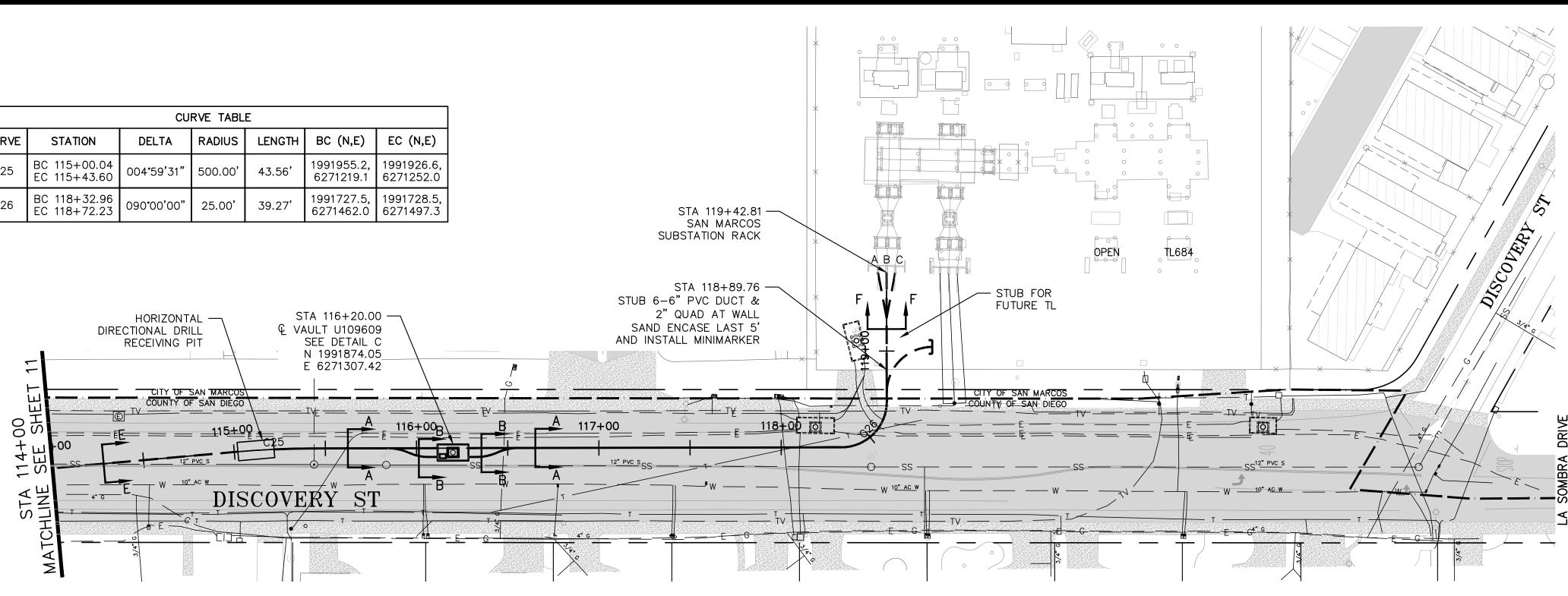
CURVE TABLE						
CURVE	STATION	DELTA	RADIUS	LENGTH	BC (N,E)	EC (N,E)
C15	BC 78+62.37 EC 79+41.86	011 ° 23'10"	400.00'	79.49'	1992958.9, 6267937.4	1992928.4, 6268010.7
C16	BC 82+36.60 EC 82+48.57	027 ° 25'15"	25.00'	11.96'	1992788.7, 6268270.2	1992785.7, 6268281.6
C17	BC 84+70.45 EC 84+89.90	044°34'48"	25.00'	19.45'	1992782.3, 6268503.5	1992774.8, 6268520.9
C18	BC 85+48.65 EC 85+68.30	045 ° 01'02"	25.00'	19.64'	1992732.9, 6268562.1	1992725.5, 6268579.8



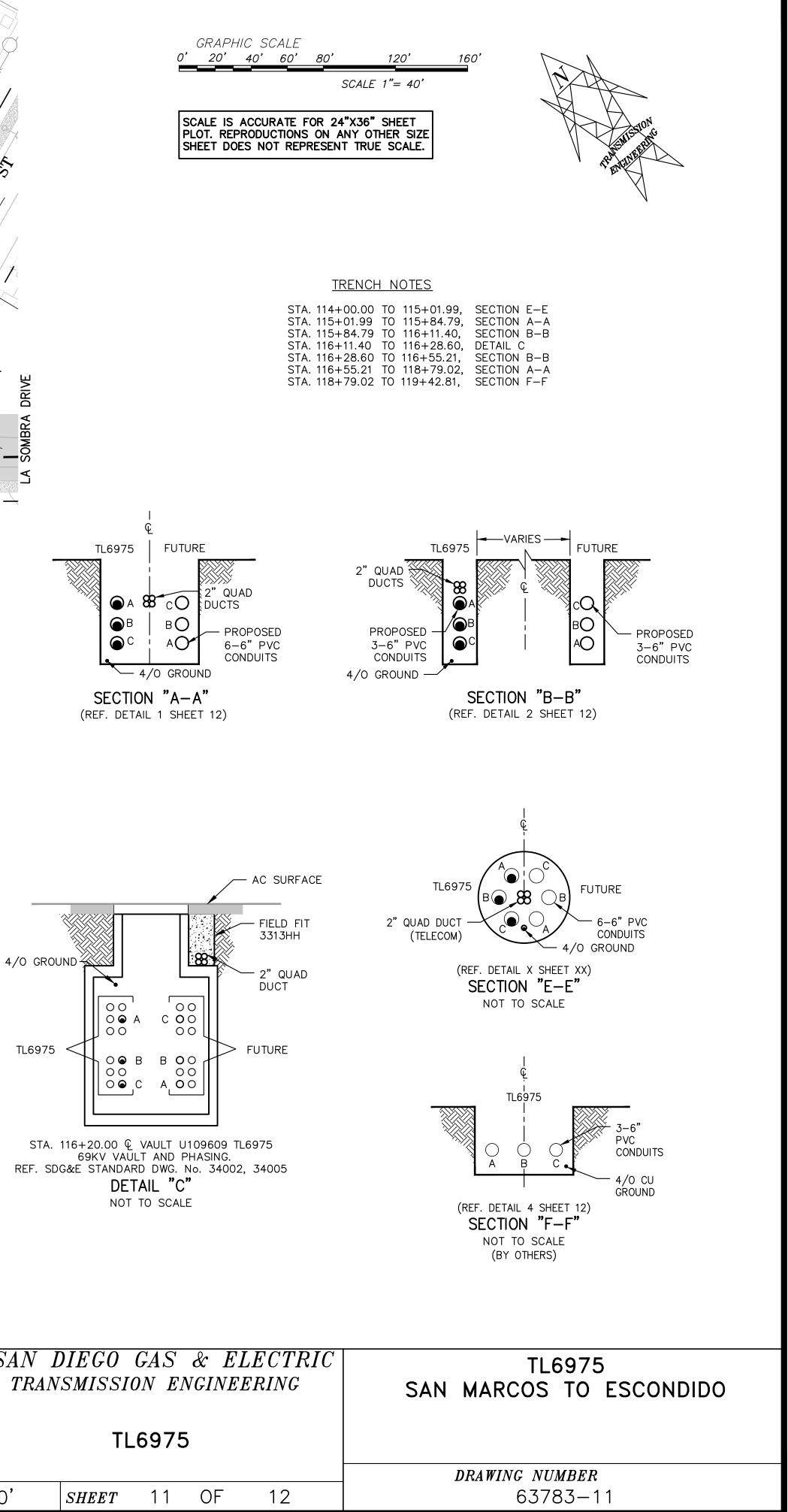
	DICTALERI	DATE:	1.
		THO. BROS.	11
N V ל		PROJ. NO.	
	Call 2 Working Days	CONST. NO.	L
NUE OF SCIENCE, SUITE 200 SAN DIEGO, CA 92128 00 tel 858.385.0400 fax www.nv5.com	Before You Dig! 811	PLAN &	F
		HORIZONTA	۱L:

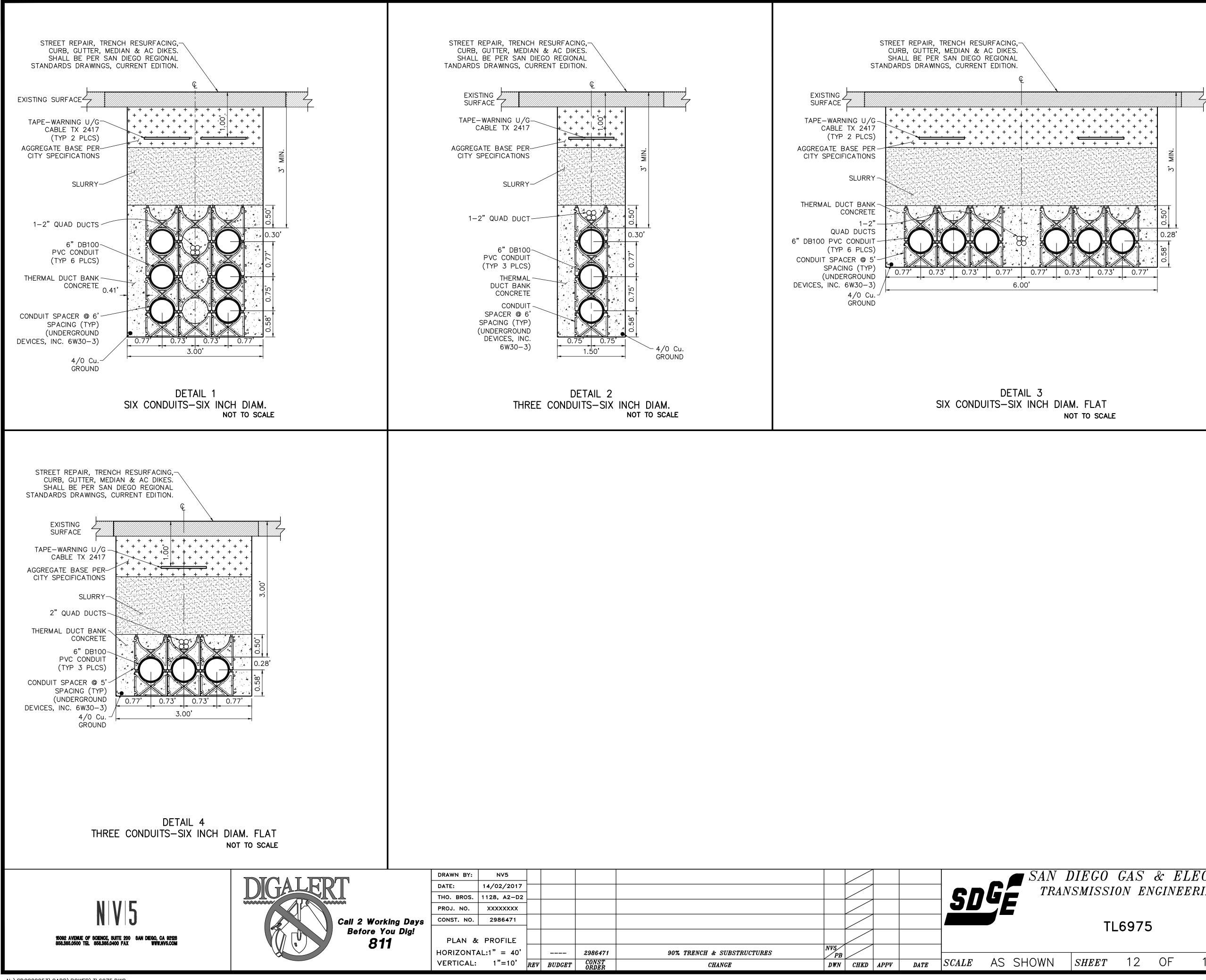

N: \SDG002053\CADD\POWER\TL6975.DWG

TI0CONSTRUC FORN0T0NLYDESIGN RELIMINARY


	STA 99+15.00 Q VAULT U109608 SEE DETAIL C N 1992719.68 E 6269926.45 SEE DETAIL C	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Image: Solution of the soluti
FM FM FM B"AC S FM FM FM FM W W M M M M M M FM FM FM M M M M M FM FM FM M M M M M		
	GRAPHIC SCA 0' 20' 40' 6	LE 0' 80' 120' 160' SCALE 1"= 40'
FUTURE FUTURE 2" QUAD DUCTS 4/0 GROUND 4/0 GROUND CONTRACE AC SURFACE FIELD FIT 3313HH CONTRACE	TRENCH NOTES SCALE IS ACCURATION STA. 90+00.00 TO 98+84.28, SECTION A-A STA. 98+84.28 TO 99+06.40, SECTION B-B STA. 99+06.40 TO 99+23.60, DETAIL C STA. 99+23.60 TO 99+45.72, SECTION B-B STA. 99+45.72 TO 102+00.00, SECTION A-A	TE FOR 24"X36" SHEET ONS ON ANY OTHER SIZE REPRESENT TRUE SCALE. TRANSMISSION ENGINEERING
BO PROPOSED 3-6" PVC CONDUITS CONDUITS BO PROPOSED 3-6" PVC CONDUITS	CURVE TABLE	
'B-B" TL6975 OO B B OO FUTURE SHEET 12) OO C A OO OO	CURVE STATION DELTA RADIUS LENGTH BC (N,E) C19 BC 100+78.32 EC 101+09.74 005*08'35" 350.00' 31.42' 1992718.6, 6270089.8	EC (N,E) 1992719.8, 6270121.1
STA. 99+15.00 € VAULT U109608 TL6975 69KV VAULT AND PHASING.		
REF. SDG&E STANDARD DWG. No. 34002, 34005 DETAIL "C" NOT TO SCALE	R B SSUMED) SSUMED) SSUMED) SSUMED) SSUMED) 24 SSUMED) 24	32 66 55 33 33 55 10 79 5 33 55 0 0
STA 94+83.20 2" CU WATER TOP OF PIPE EL=527.68	STA 98+77.87 8" PVC WATER TOP OF PIPE EL=520.58 STA 98+77.87 STA 98+79.69 2" 2" PVC WATER TOP OF PIPE EL=519.9 AS STA 99+15 69KV VAULT U109608, TL69 DETAIL C EL=522.76 STA STA 99+55.42 2" PVC TOP OF DETAIL C EL=522.76 STA STA 99+55.42 2" PVC TOP OF PSTA 100+34.18 48" RCP TOP OF EL=520.0 AS 60" RCP TOP OF EL=520.0 AS CSTA 100+45.66 CSTA 100+45.66 CSTA 100+48.27 G0" RCP <	CAUTION 1.25" CU GAS STA 100+81.35 TOP OF PIPE EL=518.11 STA 100+82.66 2" PVC WATER TOP OF PIPE EL=518.5 (ASS STA 100+83.75 STA 100+81.65 STA 101+24.35 STA 102+00.00 SEE SHEET 10
		CAL 1.25 1.27 1
Image: Section of the section of th	Image: Section of the section of t	Image: state
Image: state in the state	Image: state in the state	540
Image: state stat	Image: space of the space	530
TL6975		520
Image: state in the state in		TL6975 510
Image: series of the series		
94+00 95+00 96+00 97+00 ELEV 531.9) (ELEV 529.5) (ELEV 527.1) (ELEV 525.3)	98+00 99+00 100+00 (ELEV 524.0) (ELEV 522.9) (ELEV 522.0)	101+00 102+00 (ELEV 522.1) (ELEV 522.4)
	SDGE SAN DIEGO GAS & ELECTRIC TRANSMISSION ENGINEERING	TL6975 SAN MARCOS TO ESCONDIDO
	TL6975	
2986471 90% TRENCH & SUBSTRUCTURES NV5 PB REV BUDGET CONST ORDER CHANGE DWN CHKD APPV DATE	<i>SCALE</i> 1"=40' <i>SHEET</i> 9 OF 12	DRAWING NUMBER 63783—9

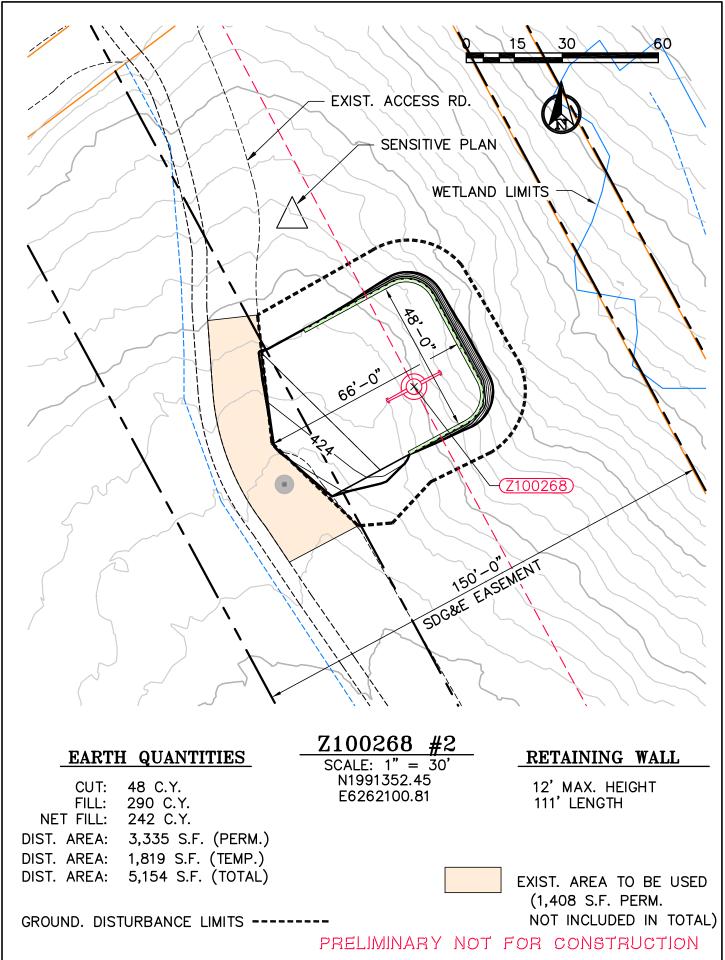
 \geq CONSTRUCT FORN0T0NLYDESIGN PRELIMINARY

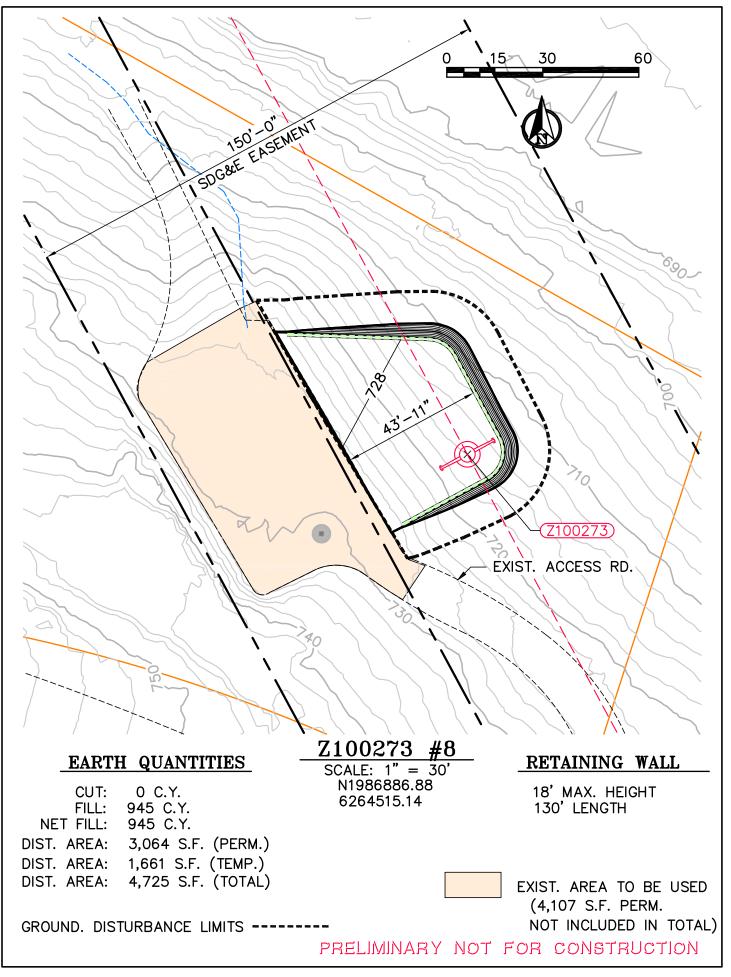

PRELIMINARY DESIGN ONLY NOT FOR CONSTRUCTION

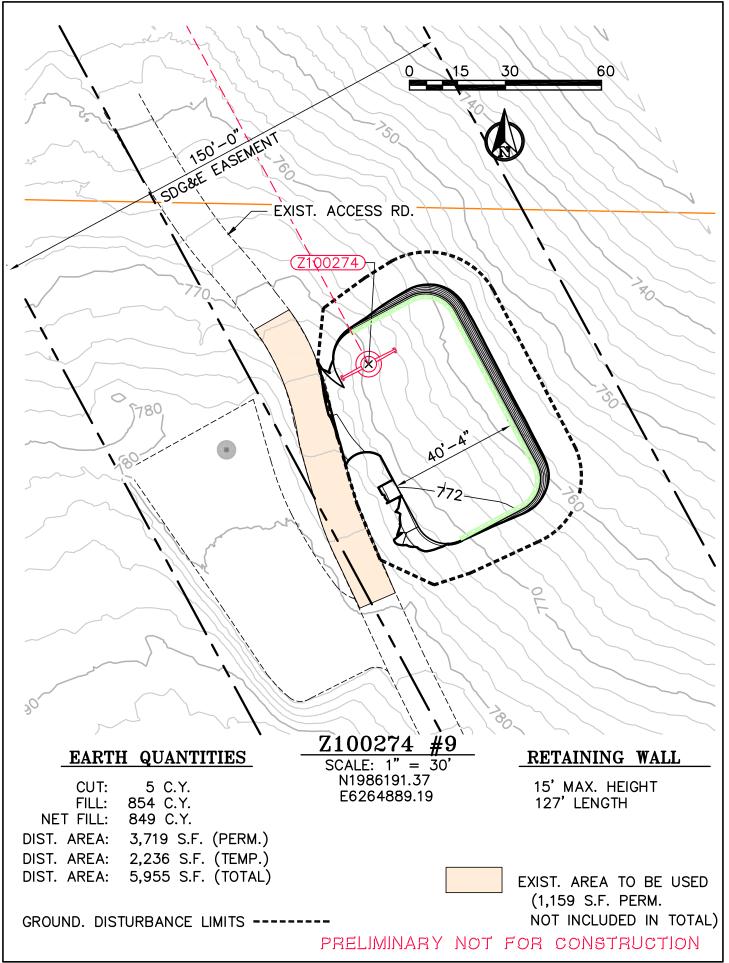


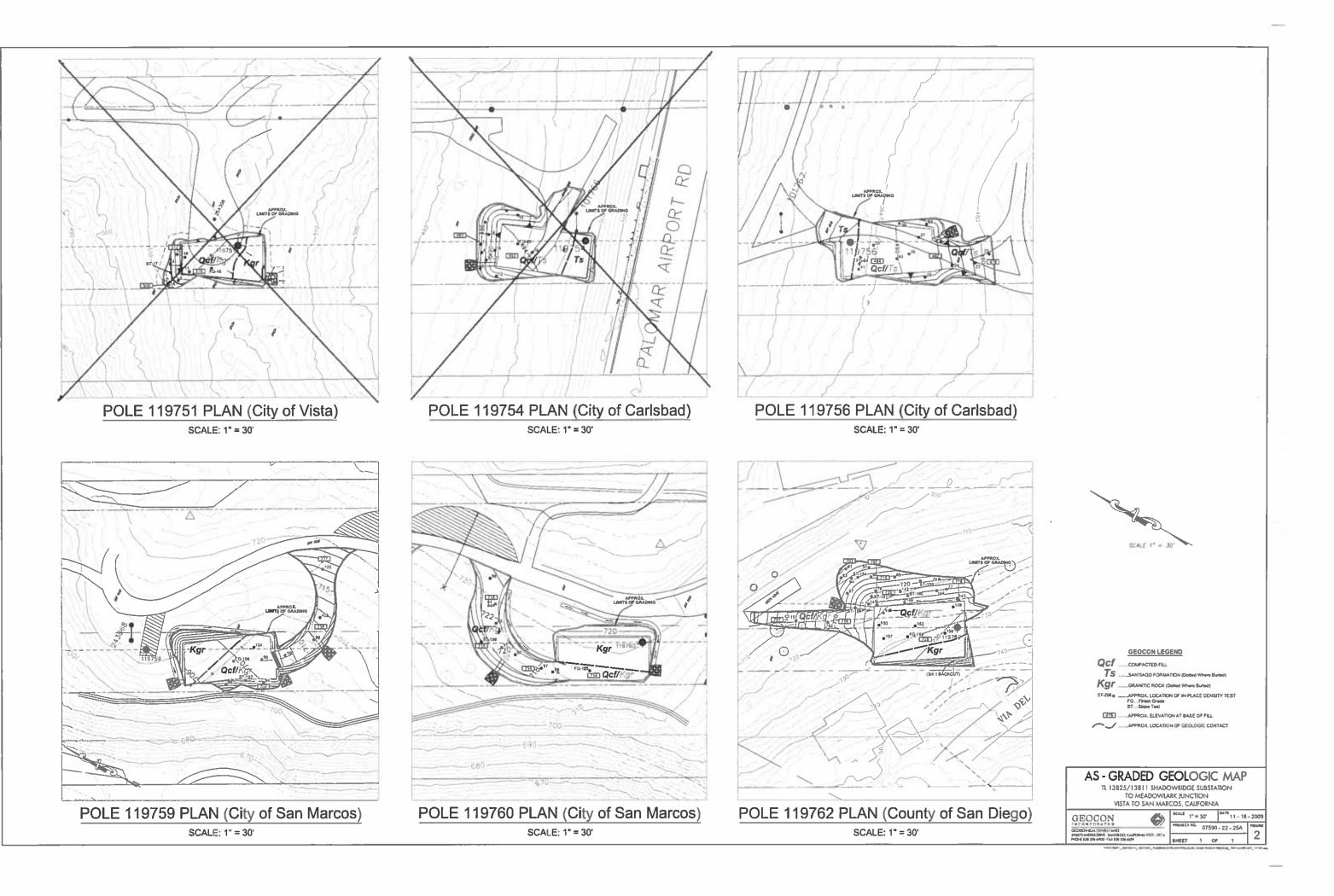
	CURVE TABLE											
CURVE	STATION	DELTA	RADIUS	LENGTH	BC (N,E)	EC (N,E)						
C25	BC 115+00.04 EC 115+43.60	004°59'31"	500.00'	43.56'	1991955.2, 6271219.1	1991926.6, 6271252.0						
C26	BC 118+32.96 EC 118+72.23	090°00'00"	25.00'	39.27'	1991727.5, 6271462.0	1991728.5, 6271497.3						

STUB 6-6" PVC DUCT & 500 2" QUAD AT WALL SAND ENCASE LAST 5' AND INSTALL MINIMARKER 490 118+00 119+00 (ELEV 522.1) 119+00 (ELEV 522.7) (ELEV) (ELEV 522.1) 120+00 107 120+95.64 118+00 119+00 118+00 119+00 118+00 119+00 118+00 119+00 118+00 119+00 118+00 119+00 118+00 119+00 118+00 119+00 118+00 119+00 118+00 119+00 118+00 119+00 118+00 119+00 118+00 119+00 118+00 119+00 118+00 119+00 118+00 119+00 118+00 110+95.64 120+95.64 120+95.64 120+00 120+95.64 118 100 118 100 119 100 119 100 119 100 119 100 119 100 119 100 119 100 119 100				STA 118+					<u>510</u>			ST	75 < 775 < 775 775 775 775 775 775
Diamond Diamond Diamond xxx xxx xxx xxx y1 xxx xxx xxx xxx xxx xxx xxx xxx y1 xxx xxx xxx xxx </td <td></td> <td></td> <td>1)</td> <td>2" QUAD SAND ENG AND INST</td> <td>AT WALL CASE LAST 5' ALL MINIMARKER 120</td> <td>+00</td> <td></td> <td>20+95</td> <td>190 .64</td> <td></td> <td></td> <td></td> <td></td>			1)	2" QUAD SAND ENG AND INST	AT WALL CASE LAST 5' ALL MINIMARKER 120	+00		20+95	190 . 64				
0' 2986471 90% TRENCH & SUBSTRUCTURES	017 D2 XX 71	-								50(Ë	SAN TRA	DIH ANSM
	-E 0'	DEV	 2986471 CONST				NV5 PB	ADDV	DATE	SCALE		LO'	SE

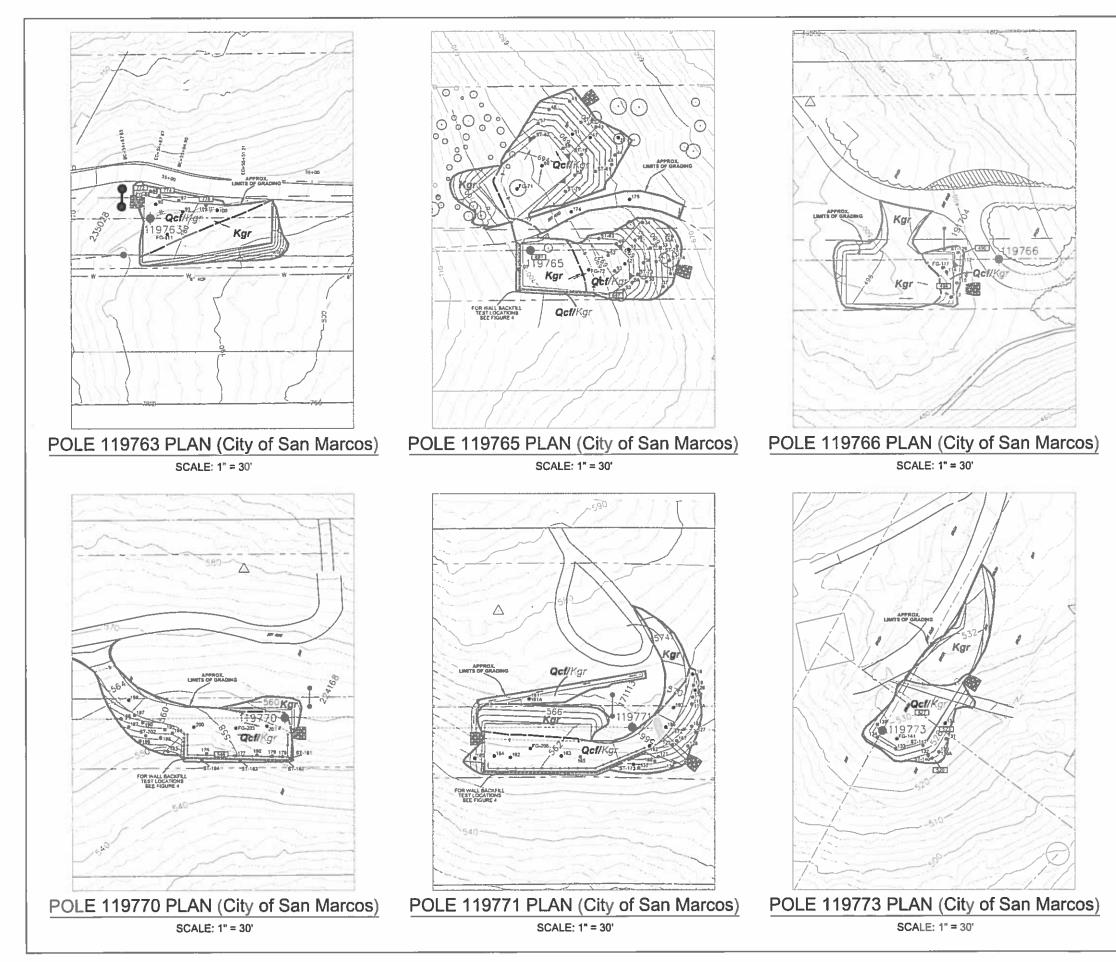

 \overline{N} TIOCONSTRUC 0RN00NLYSIGN DERELIMINARY

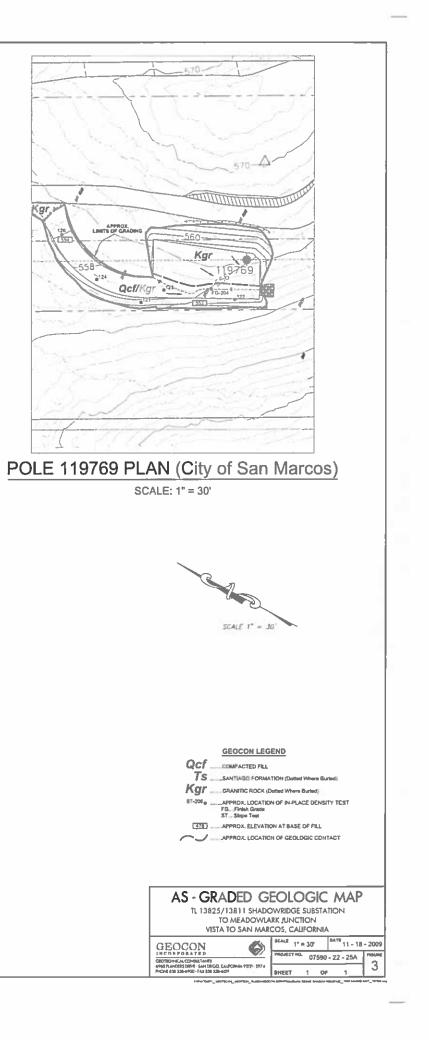


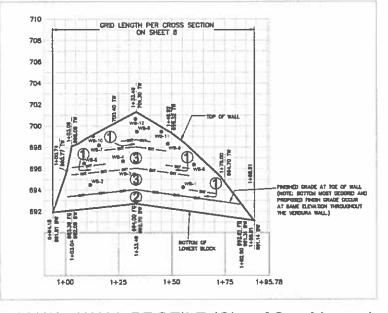

N: \SDG002053\CADD\POWER\TL6975.DWG

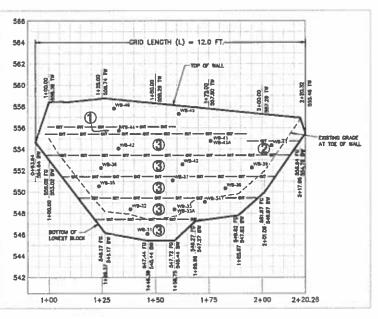

17											SAN TR	
D2									СП		\blacksquare TR.	ANSI
<									SD			
					NV5							
),			2986471	90% TRENCH & SUBSTRUCTURES	PB							
)	REV	BUDGET	CONST ORDER	CHANGE	DWN	CHKD	APPV	DATE	SCALE	AS	SHOWN	S

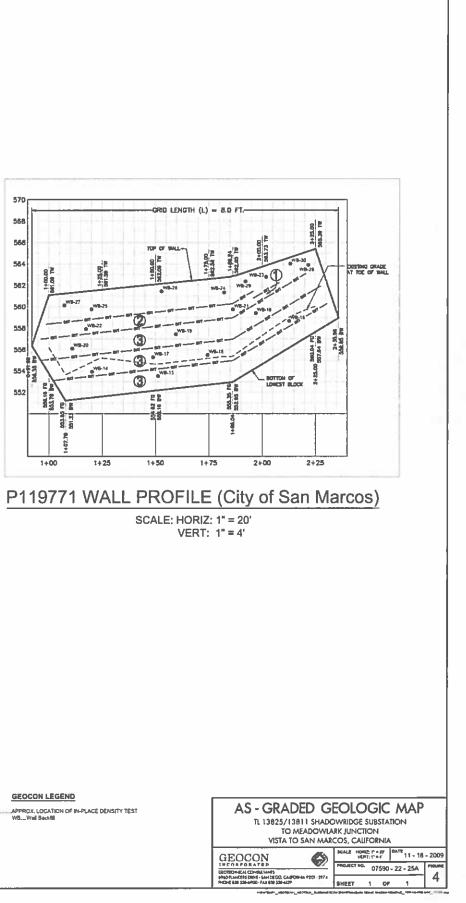
TL6975 SAN MARCOS TO ESCONDIDO						
DRAWING NUMBER 63783—12	-					
	SAN MARCOS TO ESCONDIDO					










SCALE: HORIZ: 1" = 20' VERT: 1" = 4'

GEOCON LEGEND

